
WOOD
Extending a WebAssembly VM with Out-of-Place Debugging for IoT applications

Carlos Javier Rojas Castillo
carlos.javier.rojas.castillo@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Matteo Marra
mmarra@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Jim Bauwens
jim.bauwens@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Elisa Gonzalez Boix
egonzale@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Abstract
Internet of Things (IoT) enables collaboration between hu-
mans and a diverse range of machines, including embedded
devices and sensors. Software development of IoT applica-
tions is challenging given the distributed nature of the appli-
cations and the limited resources of some devices. This paper
focuses on an extension to the WARDuino IoT platform that
enhances debugging support, an integral part of the software
development cycle.

Popular offline debugging techniques such as logs, dumps,
or record & replay are not suitable for IoT devices as they
impose too much overhead on devices and often miss contex-
tual information on the root cause of bugs. Online debuggers
seem more suitable for IoT since they enable developers to
remotely debug devices, but suffer from the probe-effect,
non-reproducibility issues and high latency.
In this paper, we explore an online debugging approach

that deals with the constraints of IoT devices and enables
low latency remote debugging. To this end, we bring ideas
of out-of-place debugging, in which the state of a running
application is moved to the developer’s machine, to IoT. We
implement our out-of-place debugging approach for IoT in
WOOD, an extension to the WARDuino VM that executes
Web Assembly on embedded devices. The paper focuses on
WOOD’s features including capturing, moving and recon-
structing debugging sessions, as well as support for accessing
remote resources and live code updating.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VMIL ’21, October 17-22, 2021, Illinois, Chicago
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCSConcepts: •Computer systems organization→Em-
bedded systems; Redundancy; Robotics; • Networks →
Network reliability.

Keywords: datasets, neural networks, gaze detection, text
tagging
ACM Reference Format:
Carlos Javier Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa
Gonzalez Boix. 2021. WOOD: Extending a WebAssembly VM with
Out-of-Place Debugging for IoT applications. In VMIL ’21: October
17–22, 2021, Illinois, Chicago. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/1122445.1122456

1 Introduction
In the past, the Internet was mainly composed of fat devices
i.e. end-user devices with great computational power and
memory capacity. Nowadays, the Internet is a heterogeneous
environment home to different kinds of devices, ranging
from sensors and actuators to cloud servers and clusters. The
part of the Internet that focuses on small devices i.e. devices
with restricted computational power and memory capacities
like micro-controllers or sensors, is known as the Internet of
Things (IoT) [14].
Since the first mentioning of IoT, the idea of intercon-

necting small devices with the internet has gained a lot of
popularity due to its applicability across diverse domains (in-
dustrial, healthcare, environmental monitoring, and more).
Because of this, IoT has become a cross-cutting concern at
the core of many academic and industrial research [2]. As
more and more developers target such systems, it is essen-
tial that the entire software development process for IoT
applications is properly supported.

Debugging is an integral part of the software development
process, but it is an area that is still challenging for IoT
applications. A recent study[9] surveying 194 IoT developers
reported that 74% of participants rely on access to the devices
to test and debug the IoT application. Moreover, 62% of the
survey participants agreed that it is challenging handling
failures in a way that data does not get lost and the system
remains available. The main problem is that there is a lack of

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

VMIL ’21, October 17-22, 2021, Illinois, Chicago Rojas Castillo et al.

tools that can deal with the device constraints and distributed
nature of IoT systems.

Debugging approaches can be classified in two main fami-
lies: online, in which the debugger guides the execution of
the application, or offline (or post-mortem) in which debug-
ging happens after a failed execution. The simplest form of
offline debugging is log-based, which require developers to
add print statements to source code. Log-based debugging
is typically undesirable as it may introduce errors into an
application and affect the timing of the application [16]. Ex-
isting logging solutions for IoT are said to be inefficient to
properly monitor all the devices in the system [9]. Another
popular offline technique is the use of dumps which give
information at the point of the failure. The success of the
dumps solely depends on a large number of contextual in-
formation recorded [16]; for IoT devices such large amounts
are voluminous given their restricted memory sizes. Finally,
record and replay debugging enables a determinstic replay of
past executions (that may contain the bug). However, they
usually cannot cope with non-deterministic input coming
from external resources (e.g. sensors) [13].
In this paper, we argue that online debuggers are more

suitable for IoT environments since they can deal with exter-
nal resources and typically impose less memory overhead
than their offline counterparts. In particular, remote online
debuggers allows for debugging IoT devices remotely, with-
out requiring physical access to the devices. However, online
debugging comes at the cost of higher latency and thus in-
creasing the chance of a problem akin to Heisenberg effect
called the probe effect [5]. Out-of-place debugging [11] is a
promising approach which supports remote debugging with
low latency. It does so by transferring the remote execution
state to a process running at the developer’s machine where
the debugging session is created. Debugging happens locally
with an online tool as the one commonly found in IDEs for
languages like Scala or Python Developers can then synchro-
nize the code updates back to the remote device once the
bug is fixed at the end of the debugging session.
In this paper we explore an out-of-place debugging ap-

proach for IoT environments. Our approach entails less net-
work overhead since while being debugged the remote de-
vices are not being touched, yet it allows developers to access
remote resources (.e.g. sensors) when necessary. We focus
on the different modifications we applied to WARDuino [7],
a Web Assembly virtual machine for embedded devices to
enable our debugging model. We show how we extend the
built-in WARDuino debugger to provide all the information
necessary that is needed to create a copy of the state of the
device, and how this information is then used by a local pro-
cess on the developers machine to replicate the remote state
in the form of a debug session. Finally we explain how re-
mote resources are handled by means of proxies and in what
way they are significant to the debugging of IoT applications.

2 Background & Motivation
In this section, we describe the necessary background on
which we base our work. In particular, we first describe
WARDuino, the Web Assembly VM that we extended for this
paper, and then the main concepts of out-of-place debugging.

2.1 WARDuino
WARDuino is a stack-based VM that enables programming
for micro-controllers in Web Assembly. Similarly to other
runtime environments formicro-controllers such asMicroPy-
thon and Espruino [4, 6, 15], WARDuino is uploaded in the
micro-controller where it executes applications. Applications
can be written in a wide range of languages (e.g. Rust, C/C++,
JavaScript, etc.) and compiled into Web Assembly (or more
specifically Wasm) by an external compiler. We can then
install WARDuino into a micro-controller to execute the
resulting Wasm.
In contrast to a high level VM such as the Java Virtual

Machine (JVM), WARDuino has several features that makes
it more suitable for resource constrained devices as the found
in IoT:

• WARDuino manages to limit its memory impact on the
micro-controller (i.e. the space it takes in the micro-
controller), by letting developers configure the used
functionality [7]. This prevents the need to upload
unused functionality and thus reducesmemory impact;
which contrasts with the all or nothing approach of
the above-mentioned runtime environments.

• Wasm is designed with performance in mind, which
is positively reflected in WARDuino. Micro bench-
marks demonstrate that WARDuino executes faster
compared to existing runtime environments for micro-
controllers [7, 8]. For example, five times faster than
Espruino.

• By leveraging on Wasm and WARDuino, a wide range
of high-level programming can be executed and man-
aged using the remote debug and live code update
facilities [7].

To execute the application on an embedded device, we
need to flash the WARDuino VM along with a copy of the
compiled Wasm bytecode to the device. WARDuino then
identifies the main portion of the application and executes
it. Currently, to interact with the WARDuino VM, interrupt
commands can be sent to the device over a serial connec-
tion that can pause the computation and control debugging
aspects of the virtual machine.

2.2 Out-of-Place Debugging
In prior work, some of the authors have proposed out-of-
place debugging for Big Data applications [12]. Out-of-place
debugging is an online remote debugging model that envi-
sions two main components: the Debugger Monitor, which is

WOOD VMIL ’21, October 17-22, 2021, Illinois, Chicago

executed alongside the application and the Debugger Man-
ager, which runs in an external process and that provides the
developer with a UI for debugging (typically executed at the
developer’s machine). When a breakpoint hits or an excep-
tion occurs in the application, the Debugger Monitor extracts
the execution context of the program and generates a debug-
ging event that is sent to the external Debugger Manager.
The Debugger Manager then creates an online debugging
session on the extracted execution context at the external
process. The concept of out-of-place debugging also includes
live code updating of the debugged remote application to be
able to patch and continue the execution.
An out-of-place debugger aims to mitigate network la-

tency issues by making debugging a local activity. Moreover,
this embraces the concept of debugging errors in isolation. In
particular, performing local online debugging on the remote
application is possible by;

1. assuming that the target application also runs locally
i.e. a copy of the target application runs in the debugger
process.

2. extracting a debug session (i.e. the program and appli-
cation state) from a running target application. And
provide it to the debugger process to use it as if it
were a locally retrieved session. In doing so it becomes
possible to synchronise the execution of the local ap-
plication, to the execution of the target application.
As such, debugging becomes an in-place activity with
reduced latency since any debug action is performed
upon the local application and no longer requires net-
work communication.

The only implementation of an out-of-place debugger
is IDRA for Pharo Smalltalk [10]. The language environ-
ment plays a key role in the implementation of IDRA since
Smalltalk is equipped with several features that ease the real-
isation of the architecture. For example, the construction of
a debug session relies on the reification of the call stack by
means of thisContext. Additionally, local debugging in IDRA
happens through the Pharo Debugger.

2.3 From Out-of-Place to Out-of-Things
Out-of-place debugging exhibits great potential for an IoT
context due to its ability to allow local debugging of re-
mote processes. From an IoT perspective this is very interest-
ing since local debugging ensures that resource-constrained
devices are not overloaded with debugging activities (e.g.
generating events for a trace or storing logs). Out-of-place
additionally introduces conceptual mechanisms to access
non-transferable resources and commit changes that become
permanent on the remote processors, which are also practi-
cal in the IoT domain, as devices have resources (e.g. sensors)
whose access would be beneficial during local debugging.

As is, however, out-of-place debugging is not directly ap-
plicable for IoT. For example, non-transferable resources are

accessed transparently, which may impose too much of a
network overhead and performance impact on resource re-
stricted IoT devices. Therefore we introduce out-of-things
debugging that extends and modifies out-of-place debugging
to fit the resource constrained environment of IoT.

In this work we implement an out-of-things debugger on
an existing VM for embedded devices, WARDuino. WAR-
Duino is a suitable runtime to build on our prototype since
it features (1) online debugging functionality that we can
extend for out-of-things debugging and (2) can be compiled
to run on the developer’s machine besides IoT hardware,
allowing us to execute the VM locally and thus potentially
support local debugging of applications.

We callWOOD (WARDuino out-of-place Debugging) the
VM that embodies all the changes onWARDuino for enabling
out-of-things debugging, and we call local WOOD the local
version running on the developer’s machine. In what follows,
we will elaborate on the concrete design of WOOD.

3 WOOD: Enabling Out-of-Things
Debugging

In this section we first describe the general architecture of
out-of-things debugging, and then discuss our approach to
deal with the debugging session, accessing remote resources,
and dynamic module and state update.

3.1 Out-of-Things Debugging Architecture
Figure 1 shows the main components of an out-of-things
debugger. Similar to out-of-place debugging, out-of-things
debugging involves two processes, the application process
(i.e. WOOD) and the debugger process, to support debugging
a remote process. Additionally, the out-of-things architecture
features one additional process called local application process
(i.e. local WOOD) that represents the local execution of the
VM, in other words, the VM needed to locally simulate and
debug the remote device. This process becomes responsible
for the roles of Local Debugger Monitor and Local Updater,
needed to debug and update the local execution.
In the setup shown in Figure 1, the debugger and lo-

cal application processes run on the developer’s machine,
whereas the application process runs on the target device.
The communication between the processes on the devel-
oper’s machine and the target device happens over the net-
work, whereas the communication between the debugger
and the local application process happens through an inter-
process mechanism.

While an application is running on the application process
(1), the Debugger Monitor monitors its execution. When a
breakpoint is reached or an exception is thrown, the Debug-
ger Manager then constructs a debug session (2), serializes it,
and sends it across the network (3) to the Debugger Manager
at the developer’s machine.

VMIL ’21, October 17-22, 2021, Illinois, Chicago Rojas Castillo et al.

Application ProcessDebugger Process

Debugger
Manager

Changes
Handler UpdaterDebugger

Monitor

Debugger Command Line Application

1

24

5

10

3

7

Local Updater
Local

Debugger
Monitor

Local Application

Local Application Process

6

9

8

Developer’s Machine Remote Device

Figure 1. The architecture of the out-of-things debugger;
dashed square indicates a process; the numbers indicate the
order of activities after a breakpoint is reached or exception
occurs; arrow line indicates process communication.

When the debug session is received (4), the Debugger Man-
ager deserializes it and forwards it to the debugger client (5).
The Debugger Manager also sends a copy to the local applica-
tion process (6) which is used to synchronise the application
and execution state of the local application process to the
application process. Deserializing the received debug session
boils down to creating a debug session at the developer’s ma-
chine with the same runtime conditions to those of the target
application. From this moment on local online debugging
can occur, i.e debug operations are continuously forwarded
to the local application process which in turn get processed
appropriately. For example, adding a breakpoint, stepping
through the execution, is handled by the local Debugger
Monitor and applied on the local application.
Once the developer is ready to commit a bug fix (7), the

Changes Handler transmits source code changes made to the
Updater component (8). And in doing so it also ensures that
the changes do not break type safety of the program 1.

TheUpdater component is responsible to apply any change
send by the Changes Handler to the target application (9).
Once a change is applied, the target application resumes
the program execution (10). For instance, if at some point
during debugging the developer has decided to commit the
changes in the debugger process, the Updater will replace
the running application with a newly provided one.

1Web Assembly is a type-safe language and thus changes to the Wasm
source code might break the type safety.

On the whole, the Updater allows to dynamically apply
changes at different levels of granularity, for example, with-
out replacing the existing application, one can also change
the execution state of the application.

3.2 The Debugging Session
Capturing a debug session is one of the most important
operations when it comes to implementing out-of-things.
To support this we extended WARDuino with the ability to
extract additional state information during debugging.
In the following we enumerate all the information that

composes a WOOD debug session; the asterisk indicates
what is (partially) reused from WARDuino:
(*1) the program counter
(*2) call stack: the different functions called (i.e. trace) to

the point where the debug session is created. Addi-
tional data pointers were added to the data structure
to keep track of the blocks related to the call frame.

(*3) all the breakpoints.
(4) the error counter: keeps track of a program location

where an exception previously occurred. More specif-
ically, when an exception occurs on a target device,
WOOD restarts the execution of the program. The er-
ror counter keeps track of which instruction caused
the program to fail.

(5) values stack: the values on the stack used throughout
the execution of a program (e.g. arguments to function
calls, a place where local variables are stored, etc.).

(6) all the global values
(7) all the information related to Wasm tables i.e. initial

and maximum size of the table, as-well-as, the table
entries. Tables is the way howWasm supports function
pointers.

(8) a copy of the memory pages; a memory page is the
way how Wasm provides heap memory space to an
application.

As shown above, WOOD’s debug session is larger than
WARDuino’s since it incorporates all application and execu-
tion state of a device. This is of course expected as WOOD’s
debug session enables local debugging of remote applica-
tions, in contrast to WARDuino’s debug session which only
allows for remote online debugging.

Reconstructing the Execution. WOOD provides the in-
frastructure for local debugging of a remote exception, a key
feature of out-of-things debugging. It does so by transferring
a debug session between the local WOOD and the remote
one. In practice, WOOD is able to replace its current applica-
tion and execution state with the one provided by a debug
session, thus enabling local debugging.
Compared to WARDuino, this feature is completely new

and brings along several debugging conveniences. For exam-
ple, one can easily switch from one debug session to another
i.e., enables debug session versioning. It also makes patching

WOOD VMIL ’21, October 17-22, 2021, Illinois, Chicago

at the level of application or execution state possible. As ex-
plained later on in section 3.4, a developer can (for example)
change stack values in a debug session, which eventually
can be committed to the remote device or local application
process.

3.3 Accessing Remote Resources
In the context of out-of-place debugging, Marra et al. [11]
employ proxy objects as a way to access non-transferable-
resources. In ourwork, examples of non-transferable-resources
are sensors or other hardware components commonly only
present on IoT devices. Since those resources are only acces-
sible by means of function calls, we designed WOOD with
the ability to perform proxied function calls. We also use
proxies as a way to access such resources but instead of
proxying all the calls to an object by default, we introduce
a remote function invocation mechanism known as proxy
call, that when performed gives access to specified resources
of a target device. This way, when local WOOD is about to
invoke a function locally that is marked as a remote resource,
a remote invocation happens instead.

The general idea of proxy calls is that when performed, the
call traverses the network and asks a target device to execute
a function. The request might also contain arguments needed
by the remote function. Once the execution completes, the
resulting value of the call is then returned to the caller.

However, to correctly enable proxy calls, we need to keep
the constrained characteristics of devices in an IoT environ-
ment in mind:

• Despite featuring different network technologies, com-
munication is challenging for those devices (e.g. lim-
ited communication range, harmful for the device’s
lifespan). And thus performing proxy calls is not al-
ways possible or should be minimized.

• Proxy calls should have almost no effect on the target
application. Unfortunately, no effect is not possible
since proxy calls may result in side effects. Neverthe-
less, we still need to isolate the execution of proxy
calls from the execution of the target application. This
is especially useful when dealing with exceptions. For
example, when debugging a production application,
a proxy call can raise an exception that compromises
the running application.

Request & Answers Proxy Calls. Taking those charac-
teristics into account, when performing a proxy call, local
WOOD sends the arguments and the identity of the function
to call to WOOD. When receiving the proxy request, WOOD
temporarily pauses the execution of the current program,
then executes the function using the received arguments and
returns the result value of the call (if any). If the call results
in an exception, the exception message is answered instead.
Note that WOOD is the only one able to answer proxy

calls but not request them. This is because requesting proxy

calls is only needed by local WOOD. And since the needed
functionality (to support the request of proxy calls) takes
memory space in the memory restricted IoT device, we sim-
ply omit it.

Configuring the Debugger to use Proxies. The out-of-
things debugger uses a debugger configuration file to know
which functions to proxy. For this, the developer adds a proxy
entry in the file, providing an array of names for the functions
that need proxying. This information is then forwarded to lo-
cal WOOD and used to perform remote invocation whenever
necessary.

3.4 Dynamic Module and State Update
In an out-of-things debugger, when the developer changes
the source code and commits the change, the Changes Han-
dler transfers a compiled version of the source code to the
Updater (i.e. WOOD). To enable live code updating, WOOD
can dynamically replace a Wasm module with another one,
meaning that, if WOOD would be currently executing a
Wasm application, it can stop the application’s execution
and replace it with another one.
This particular way of updating software is an example

of live code update. The advantage of this approach is that
there is no need to physically access the device in order to
flash a new codebase in it. Additionally it is also faster when
compared to flashing over a serial connection [18].

3.4.1 ModifyApplication andExecution State. Besides
changing the source code and committing these changes,
developers can modify parts of the execution state during
debugging. For example, a developer can choose to patch the
extract the current state of local WOOD and patch it into
WOOD.

What follows describes what can be changed:

• Values stack: the values stack contains all the values
used during the program execution of a Web Assembly
program. For example, it can contain the arguments
used for a function call. Thanks to this debugging fea-
ture it becomes possible to change those arguments
dynamically.

• Globals: developers can change the values storedwithin
the global variables.

• Table: a table in Wasm is the way how it supports
function pointers. Such a table contains entries that
correspond with function identifiers. During program
execution, one can dynamically specify an index in the
table, that tells what function will be called (i.e. the
function identifier). The out-of-things debugger lets
the developer update entries in that table, thus replace
a function identifier with another.

VMIL ’21, October 17-22, 2021, Illinois, Chicago Rojas Castillo et al.

The ability to modify these data structures is useful when
one wants to perform low-level modifications to the execu-
tion state. However, it may endanger the program’s execu-
tion given that type safety can no longer be guaranteed: e.g.
it is possible for developers to replace functions in the table
with other functions using different type signatures, or to
modify stack values from float to integer. To prevent such
issues, the debugger currently only allows changes that pre-
serve type safety (but this can be disabled by an experienced
developer).

4 Open Challenges
We now describe some challenges that remain in order to
improve the performance and practicality of WOOD.

Performance optimizations. Initial benchmarks show
that the execution speed of WOOD is lower than that of the
original WARDuino. This is mainly due to the current imple-
mentation of the network socket server. Right now the socket
server is responsible for 1) listening for network activity and
2) processing the network activity if any occurs. Since com-
munication to the device can happen at any time, the socket
server is regularly polled by the interpreter loop of the VM.
This significantly reduces performance of instruction execu-
tion. Fortunately, performance is expected to improve when
decoupling these two processes. For this, we plan to register
the server’s responsibility as an interrupt handler, where the
interrupt gets trigger when network activity occurs. Thus
the network stack of the IoT device becomes responsible
for listening for network activity and triggering interrupts.
This would result in a significant speedup of WOOD in the
ESP32 family of devices we used for testing as they feature a
dual core architecture with one core responsible for network
activity.

Mapping debugging operationswithWASMsource sym-
bols. Source mapping enables developers to perform debug-
ging operations at the level of the debugged source code.
Right now we support source mapping on symbols from
Wasm files. To realise source mapping, we used several exter-
nal tools (i.e. TheWeb Assembly Binary Toolkit and amodified
version of it) [1, 17], that generate relevant debug informa-
tion (e.g., quantity of defined functions, global variables, etc.)
while compiling the source code. Moreover, we parse this
information and capture it as an instance ofWAModule class.

However developers do not typically implement their ap-
plications in Web Assembly, but rather they compile to Web
Assembly from other higher level languages (e.g. C++, Rust,
AssemblyScript, etc.). As such, our debugger should be used
directly from these higher level languages. Unfortunately,
currently there exists no stable standardised mapping to
Wasm. Work is underway to support DWARF debug info
withWeb Assembly [3], but this is not yet complete. In future

work we will look at how these projects evolve and how they
can be integrated with this work.

Proxy granularity. As explained in Section 3.3, our de-
bugger allows for the proxying of function calls between the
local WOOD process and a WOOD application running on
a remote IoT device. Right now developers need to specify
what function calls are proxied. This means that it is up to the
developer to decide at what granularity a particular segment
of code can be debugged, which can be problematic as de-
velopers can accidentally proxy too much calls (incurring in
high network overhead) or too few calls (potentially missing
bugs located in the proxied code). To assist developers in this
decision, we are considering some forms of static analysis.
Another idea is to allow mixed proxy calls depending on the
stack trace. For example, a function call to digitalWrite (a
function that can toggle the set of a GPIO hardware pin) will
only be proxied if a particular function can be found in the
stack trace.

5 Conclusion
In this paper, we explored an online debugging approach
that can deal with the constraints of IoT devices and enables
low latency remote debugging. To this end, we introduce
out-of-things debugging, a variant of out-of-place debugging
specially designed for IoT, in which the state of an application
running in a device is moved to the developer’s machine so
that it can be debugged locally with the classic online debug-
ging facilities offered by mainstream IDEs. By moving the
process locally, all debugging operations have low latency
and do not impact the remote IoT device, limiting downtime.
WOOD, our out-of-things debugger, is implemented as an
extension to the WARDuino VM that executes Web Assem-
bly on embedded devices. While WOOD already runs on the
ESP32 family of embedded devices and can be used to debug
remote applications locally and out-of-place on the devel-
oper’s machine, further research is needed to tackle several
open challenges and make WOOD a practical solution to
debug IoT applications.

References
[1] Web Assembly. [n.d.]. The WebAssembly Binary Toolkit. https://

github.com/WebAssembly/wabt. Accessed: May 1, 2021.
[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet

of Things: A Survey. Computer Networks 54, 15 (Oct. 2010), 2787–2805.
https://doi.org/10.1016/j.comnet.2010.05.010

[3] Yury Delendik. [n.d.]. DWARF forWebAssembly. https://yurydelendik.
github.io/webassembly-dwarf/. Accessed: 10 August 2021.

[4] Espruino. [n.d.]. Espruino. https://www.espruino.com/. Accessed:
April 20, 2021.

[5] Jason Gait. 1985. A Debugger for Concurrent Programs. Software:
Practice and Experience 15, 6 (June 1985), 539–554. https://doi.org/10.
1002/spe.4380150603

[6] Damien George. [n.d.]. MicroPython. https://micropython.org/. Ac-
cessed: April 20, 2021.

https://github.com/WebAssembly/wabt
https://github.com/WebAssembly/wabt
https://doi.org/10.1016/j.comnet.2010.05.010
https://yurydelendik.github.io/webassembly-dwarf/
https://yurydelendik.github.io/webassembly-dwarf/
https://www.espruino.com/
https://doi.org/10.1002/spe.4380150603
https://doi.org/10.1002/spe.4380150603
https://micropython.org/

WOOD VMIL ’21, October 17-22, 2021, Illinois, Chicago

[7] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino:
a dynamic WebAssembly virtual machine for programming micro-
controllers. In Proceedings of the 16th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes - MPLR
2019. ACM Press, 27–36. https://doi.org/10.1145/3357390.3361029

[8] Minsu Kim, Hyuk-Jin Jeong, and Soo-Mook Moon. 2016. Small Foot-
print JavaScript Engine. In Components and Services for IoT Platforms.
Springer International Publishing, 103–116. https://doi.org/10.1007/
978-3-319-42304-3_6

[9] Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development
Challenges. In 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE). 460–472. https://doi.org/10.1109/ICSE43902.
2021.00051

[10] Matteo Marra. [n.d.]. IDRA. https://gitlab.soft.vub.ac.be/Marra/IDRA.
Accessed: May 1, 2021.

[11] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2018. Out-
Of-Place debugging: a debugging architecture to reduce debugging
interference. The Art, Science, and Engineering of Programming 3, 2 (nov
2018). https://doi.org/10.22152/programming-journal.org/2019/3/3

[12] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2020. A
debugging approach for live Big Data applications. Science of Computer

Programming 194 (2020), 102460. https://doi.org/10.1016/j.scico.2020.
102460

[13] Charles E. McDowell and David P. Helmbold. 1989. Debugging
Concurrent Programs. Comput. Surveys 21, 4 (Dec. 1989), 593–622.
https://doi.org/10.1145/76894.76897

[14] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich
Chlamtac. 2012. Internet of things: Vision, applications and research
challenges. Ad Hoc Networks 10, 7 (2012), 1497–1516. https://doi.org/
10.1016/j.adhoc.2012.02.016

[15] Duktape organization. [n.d.]. Duktape. https://duktape.org/. Accessed:
may 1, 2021.

[16] David Pacheco. 2011. Postmortem Debugging in Dynamic Environ-
ments. Commun. ACM 54, 12 (Dec. 2011), 44–51. https://doi.org/10.
1145/2043174.2043189

[17] TOPLLab. [n.d.]. The Webassembly Binary Toolkit. https://github.
com/topllab/wabt. Accessed: May 1, 2021.

[18] Chi Zhang, Wonsun Ahn, Youtao Zhang, and Bruce R. Childers. 2016.
Live code update for IoT devices in energy harvesting environments.
In 2016 5th Non-Volatile Memory Systems and Applications Symposium
(NVMSA). 1–6. https://doi.org/10.1109/NVMSA.2016.7547182

https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1007/978-3-319-42304-3_6
https://doi.org/10.1007/978-3-319-42304-3_6
https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1109/ICSE43902.2021.00051
https://gitlab.soft.vub.ac.be/Marra/IDRA
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.1016/j.scico.2020.102460
https://doi.org/10.1016/j.scico.2020.102460
https://doi.org/10.1145/76894.76897
https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1016/j.adhoc.2012.02.016
https://duktape.org/
https://doi.org/10.1145/2043174.2043189
https://doi.org/10.1145/2043174.2043189
https://github.com/topllab/wabt
https://github.com/topllab/wabt
https://doi.org/10.1109/NVMSA.2016.7547182

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 WARDuino
	2.2 Out-of-Place Debugging
	2.3 From Out-of-Place to Out-of-Things

	3 WOOD: Enabling Out-of-Things Debugging
	3.1 Out-of-Things Debugging Architecture
	3.2 The Debugging Session
	3.3 Accessing Remote Resources
	3.4 Dynamic Module and State Update

	4 Open Challenges
	5 Conclusion
	References

