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Abstract—Apache Spark is a framework widely used for
writing Big Data analytics applications that offers a scalable
and fault-tolerant model based on rescheduling failing tasks
on other nodes. While this is well-suited for hardware and
infrastructure errors, it is not for application errors as they
will reappear in the rescheduled tasks. As a result, applications
are killed, losing all the progress and forcing developers to
restart them from scratch. Despite the popularity of such a
failure-recovery model, understanding and debugging Spark-
like applications remain challenging. When an error occurs,
developers need to analyze huge log files or undergo time-
consuming replays to find the bug. To address these concerns,
we present an online debugging approach tailored to Big Data
analytics applications. Our approach includes local debugging of
remote parallel exceptions through dynamic local checkpoints,
extended with domain-specific debugging operations and live code
updating functionality. To deal with data-cleaning errors, we
extend our model to easily allow developers to automatically
ignore exceptions that happen at runtime. We validate our
solution through performance benchmarks that show how our
debugging approach is comparable or better than state-of-the-
art debugging solutions for Big Data. Furthermore, we conduct
a user study to compare our approach with another state-of-the-
art debugging approach, and results show a lower time to find
the solution to a bug using our approach, as well as a generally
good perception of the features of the debugger.

I. INTRODUCTION

Big Data frameworks such as Hadoop Map/Reduce and
Apache Spark (Spark in short) are extremely popular and
widely used in industry for writing data analytics applications
due to their ability to scale to large amounts of data and their
resilience. They provide a fairly simple programming model
which exploits both the convenience of function calls to mask
their parallelization and fault-tolerance mechanisms aimed at
the not always reliable execution on a cluster. When a program
fails during a parallel execution, the framework re-schedules
the failed computation in another node. Applications then
either terminate without errors or, if the failure was caused by
a bug in the code, they stop after a number of re-scheduling
attempts. While such a failure-recover model gracefully deals
with hardware and infrastructure errors, it is not suitable for
application errors as they reoccur even when they are re-
scheduled. As such, applications are eventually stopped when
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reaching the rescheduling limit, forcing developers to redeploy
them, i.e. restarting them from scratch in the cluster.

Whenever errors occur, log files are generated and progress
results are discarded. Unfortunately, extracting enough infor-
mation from these logs to understand production failures is
known to be difficult [1]. Alternatively, a (partially) recorded
execution could be replayed using replay and check-point-
based debuggers [2], [3]. Replaying requires high debugging
time, especially when data analytics applications run for many
hours or days. Checkpoint-based debuggers can potentially
alleviate that issue, but current solutions for Big Data frame-
works, like BigDebug [3] for Spark, rely on developers placing
the right checkpoints beforehand, which does not guarantee to
avoid a total replay. In fact, developers usually avoid non-
necessary checkpoints due to their performance costs. More
recently, data provenance [4] has been explored to backtrack
exceptions during the execution. This approach still requires a
post-mortem analysis through backtracking and at least partial
replays. Full online debugging support as found in mainstream
IDEs remains unexplored for Big Data frameworks.

In this work, we propose the use of an always-active
debugging infrastructure to interactively debug Spark-like1

applications. We argue that Big Data frameworks should
incorporate debugging support which (1) reduces replay times
upon an error to the minimum, (2) provides all the contex-
tual information necessary to discover the bug, (3) avoids
full redeployment of applications for application errors when
possible, (4) and gives the possibility of automatically ignoring
errors related to data that would anyways be discarded. This
paper presents a practical online approach specially designed
to offer such debugging support. Our approach avoids re-
plays by transferring the context of a failing execution to a
debugger as soon as a failure occurs. The debugger offers
full debugging capabilities on a remote exception similar to
what mainstream IDEs offer for regular applications including
the possibility of inspecting all variables, stepping into/over
the execution of expressions, and augmented with advanced
stepping operations targeted to the Spark-like model (such as
step to next transformation, step to next element, and step to

1We define Spark-like applications those written with a programming based
on a distributed data structure akin to Spark’s RDD [5].



action result). To ease the development process, our approach
features live code updating capabilities that avoid redeploying
the whole application upon any code change, as well as a
built-in ignoring functionality to automatically ignore failures
in certain parts of the program.

We validate our approach with both performance bench-
marks and a user study using Spa, our framework for Spark-
like executions in Pharo Smalltalk. On the one hand, we
show that our debugging approach is practical by measuring
its overhead on the execution when multiple failures happen
in parallel; on the other hand, we show through a within-
participant strong experimental user study with 17 participants
that the time to find a bug was on average lower using our
debugger, and our live code updating capabilities allowed par-
ticipants to minimize application re-deployments. Overall, the
participants rated positively to very positively Spa’s debugging
features when compared to a debugger similar to Big Debug.

The key contributions of this paper are:
• An online debugging model for Spark-like applications

based on dynamic local checkpoints, that enables local
debugging of remote parallel exceptions and incorporates
domain-specific debugging features such as partition win-
dowing and composite exceptions.

• Built-in support to automatically ignore exceptions
caused by records that should be removed anyways before
an analysis through a data cleaning phase.

• An implementation of our approach in Pharo Smalltalk,
including debugging through dynamic local checkpoints
and live code-updating of applications, that we use for
both our performance benchmark and our user study.

• We validate the overhead of our approach through per-
formance benchmarks, and the usability of our debugger
and its features through a user study.

II. BACKGROUND AND MOTIVATION

This section introduces the context and motivation of our
work. We first discuss Spa, the system in which we built
our online debugging model and added support for ignoring
exceptions. Spa is a Big Data framework for Pharo Smalltalk,
that features a programming and computational model akin
to Spark [6], i.e. Spark-like. Like Spark, Spa is based on the
Master/Worker model [7] in which several workers execute
operations on data partitions (i.e. partitions) and a master
assigns the execution of operations (i.e. tasks) to the workers
and coordinates their results. In what follows, we use Spa to
introduce the key concepts of our Spark-like model.

A. Big Data Programming with Distributed Data Structures

Spa’s programming model is based on the concept of a
distributed data structure (DDD), akin to Spark’s RDD [5].
Using DDDs, applications are expressed in terms of functional
transformations on data structures that are eventually executed
in parallel by the infrastructure. Developers create a DDD by
distributing a data source such as a collection or a file and
apply operations on it. DDD operations are divided into two
groups: transformations and actions.

In detail, transformations do not alter the structure of
the data, but just (potentially) its contents and are executed
in a lazy fashion. Common transformations include map:,
filter:, and flatMap:. Each transformation returns a
new DDD: if more than one transformation is called in
sequence, all these transformations are pipelined. Actions are
operations that alter the structure and optionally the contents
of the data structure and are executed eagerly, immediately
triggering the execution of the operation pipeline. Common ac-
tions include reduce:, reduceByKey:, groupByKey:,
aggregate:with:, sorted: and count: operations.
The code snippet below illustrates how these are put together
to make up a classical word count application in Spa using
two transformations and one action. 2

fileDDD := spa distributeFromFile: ’/path/to/file/or/dir’
flatDDD := fileDDD flatMap: [:line | (line substrings: ’ ’) ].
pairDDD := flatDDD map: [ :word | word −> 1 ].
result := pairDDD reduceByKey: [:v1 : v2 | v1 + v2 ].

B. Persistence

By default, actions do not store intermediate results: it
is up to developers to decide when to persist data in the
execution pipeline. The execute action stores in a new DDD
the contents of the current DDD after applying all of the
transformations in the pipeline, making data available across
subsequent operations.

Persisting data in a Spark-like model implies high per-
formance costs as, besides its memory footprint, it requires
coordination between the workers and the master. This forces
developers to carefully choose at what point in the pipeline
data is stored so that the overhead of persisting is lower than
the overhead of redoing that part of the pipeline.

Load File MapFlatMap ReduceByKey
S A B C

Map Potential persistence points  Operation

Fig. 1. The pipeline of a wordcount and its potential persistence points.

To explain this trade-off, consider again the wordcount
application explained above. Figure 1 shows the execution
pipeline of the application. The circles represent the different
points in which a developer may introduce a persistence point:
S (start), A, B, and C. Persisting at point A (after loading
the file), will store the content of the file in memory, so
developers usually insert it if those contents are used more
than once. Persisting at point B would break the pipelining of
the flatMap and the map, requiring a synchronization in the
middle, so developers rarely insert it. Persisting at point C will
store the filtered and mapped data, so developers will insert it
if that data is used again in some other computation after the
reduceByKey operation.

2All code snippets are written in Smalltalk. In Smalltalk, method invoca-
tions are expressed with keywords, closures are delimited by square brackets
and dots are used as statement separators. “spa distribute: data.”
is equivalent to “spa.distribute(data);” in canonical syntax.



C. Debugging Support

Let us consider an exception during a parallel execution
causing the application to terminate with an error. Upon the
error, the developer gets a log including a stack-trace and
information about the exception (i.e. its type). Unfortunately,
debugging using logs is very difficult because they miss
important contextual information relevant to determine the root
cause of the bug [1]. The contextual information is typically
limited to what developers anticipated beforehand, usually a
stack-trace, and the values of particular variables that they
printed to the standard output.

Recently, several offline debuggers have been proposed
for Big Data frameworks [2], [3], [8]. A replay debugger
such as Arthur [2] allows developers to replay a previously
recorded execution. In our example, it will need to replay
from S to the point where the exception is raised. Due to
the amount of data that is analyzed, these replay times can
be very long. Alternatively, a checkpoint-based debugger such
as BigDebug [3] exploits the points at which an application
persists data to make a checkpoint. In particular, BigDebug
will replay from the latest persisted point that is closest to
a breakpoint, potentially reducing the replay time. However,
since developers avoid checkpointing due to their performance
costs, there is no guarantee that a checkpoint was placed
when a failure actually appears. This leads to at least a partial
replay of the application to find the place where to checkpoint,
with a full replay in the worse case when no checkpoints are
available. Concerning contextual information, those debuggers
do not offer much more information than log-based solutions.
For instance, BigDebug only exposes the value/record passed
as a parameter to the current transformation, but it is not
possible to check the values of other variables nor to evaluate
code in the context of the debugged execution.

We should also consider that not all errors are harmful:
there are situations where ignoring certain application errors
has little or no impact on the final result of the application. For
instance, a recent study has shown that developers spend hours
debugging data-cleaning errors [9], finding that a handful of
fail-inducing data records are often traduced in hours of lost
computations. In Hadoop Map/Reduce a parameter can be set
in the configuration files to disregard a certain number of failed
tasks. However, this is not easily adaptable since requires a
full restart of the framework when changed, and is very corse-
grained as it applies to all tasks for all applications. While it is
possible to ignore exceptions manually, this involves adding
boilerplate code to correctly handle and return the ignored
records.

Besides finding the root cause of a bug, a crucial aspect of
the debugging cycle is to update the program with a corrected
version. The most common approach is to recompile the
application to redeploy it in the cluster. In Spark, redeployment
to a cluster implies re-packaging the application, uploading it
to the cluster, and re-submitting it to the framework instance.
Since this process is time-costly, debuggers such as BigDebug
allow updating the code of an application, but in a limited way:

in BigDebug developers may update only the code applied
by a transformation. Broader changes to the code such as
modification of the pipeline or application methods and classes
need a standard redeployment.

D. Problem Statement

The existing debugging support for Spark-like applications
discussed above suffers from some issues that motivate our
work:

1) They rely either on replay or on memory and costly
checkpointing. In contrast, an always-on online debug-
ger could enable immediate access to the execution and
interactive debugging through stepping operations.

2) They offer very limited contextual information on a
breakpoint or failed execution. For instance, they lack
the possibility to inspect all the variables in the context
of the execution, as well as the ability to evaluate
expressions in the same context.

3) They do not support fine-grained automatic ignoring of
exceptions to neutralize data-cleaning errors customiz-
able per application or task.

4) They offer very limited support for updating an appli-
cation without fully re-deploying it.

III. ONLINE DEBUGGING OF BIG DATA APPLICATIONS

In this paper, we explore always-active debugging support
specially designed to deal with the characteristics of Spark-
like applications. We propose a novel debugging approach
that combines traditional online debugging with dynamic local
checkpoints, i.e. checkpoints which are created dynamically
when an exception happens. The checkpoint captures all the
contextual information about the exception and propagates
it to the developer’s machine, opening a debugging session
recreating the runtime environment of the bug. The benefits
of this approach are two-fold. First, dynamic checkpointing
removes from the user the burden of deciding where to
checkpoint, as it is automatically created upon exception.
Second, developers proceed to debug locally using a traditional
online debugger that exposes all contextual information and
step operations. To deal with Spark-like computation, our ap-
proach offers dedicated stepwise operations, e.g., step to next
transformation, incorporates live code-updating capabilities to
avoid full redeployments and support to automatically ignore
exceptions. In what follows we describe in more detail the key
concepts of our approach.

A. Overview of our Online Debugging Architecture

Figure 2illustrates our debugging infrastructure, in yellow,
on top of a Spark-like runtime in blue (Spa in our prototype
implementation). In this example, it is deployed on a cluster
hosting one master and two different workers nodes. The de-
veloper’s machine is external to the cluster, and runs the moni-
toring and debugging UI in white. Our infrastructure augments
the Spark-like runtime with a Debugger Monitor at the master
node in charge of capturing the dynamic checkpoints and send
them to a Debugger Manager at the developer’s machine.
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Fig. 2. Architecture of our debugging model.

Our approach supports live code updating by introducing a
Changes Handler within the developer’s machine that packages
the code changes done during a debugging session in a patch
and sends them to the Updater in the cluster worker nodes. The
Updater applies the code patches and resume the execution of
the affected tasks.

Our debugging architecture is based on prior work on out-
of-place debugging [10], [11]. In contrast to prior work, that
focused on debugging general-purpose [10] and Map/Reduce
applications [11], this work introduces (1) dynamic local
checkpoints, (2) automatic ignoring of exceptions, and (3)
domain-specific debugging operations for stepwise execution
of Spark-like applications. Finally, it also revisits the original
live code-updating support.

B. Practical Online Debugging with Dynamic Local Check-
points

Inspired by out-of-place debugging, when an exception
happens in the cluster, the entire execution environment (i.e.
the execution stack with its associated data) is transferred
to the developer’s machine to enable local debugging of the
remote computation. This allows developers to debug errors
in isolation and avoid replays. However, in Spark-like appli-
cations, the associated data may be very large as it includes
the failure-inducing record as well as the whole partition that
includes it. In order to scale to large amounts of data processed
by Spark-like applications, we incorporated two features: (a)
partition windowing and (b) composite exceptions.

a) Partition windowing: Instead of transferring the entire
execution stack, our approach (i) removes all the frames from
the stack related to framework-related method calls on the
worker, and (ii) trims the data of the failing partition around
the failure-inducing record. For example, if the runtime was
applying a map: over a partition of 3000 elements, and
the element at index 1234 fails, the failing partition will be
cut to contain only a window of N elements, with indexes
[1234− (N/2), 1234+(N/2)], adjusted to respect the bounds
of the partition. Partition windowing allows developers to
debug a failure-inducing record in context with its neighboring
records without having to transfer large amounts of data.
By customizing the window size (i.e N), developers make a
trade-off between the debugging overhead and the contextual
information accessible during debugging.

b) Composite exceptions: To further reduce network
overhead, our approach adapts the concept of composite ex-
ceptions, originally devised for Map/Reduce [11] to DDDs.

Composite exceptions aggregate many similar exceptions that
occur in the same parallel execution regardless of their data
partition or worker nodes. We consider two exceptions similar
if they have the same type and they happened at the same point
of the execution; i.e. same call stack, same program counter.

In order for composite exception to work with DDDs we
employ delta stacks [12]: we extract the execution stacks of
two similar exceptions and for each pair of stack frames, we
compute their differences. We then serialize only one of the
stacks of the two exceptions (previously shrunk with partition
windowing), and for the other one only the differences. If there
are more than two similar exceptions, the serialization of all
other ones will include only the differences with the first one.

C. Domain-specific Debugging Operations

Crucial to our approach is that developers debug Spark-
like applications by means of a local online debugger on a
breakpoint or exception hit on a remote worker. Once the
debugging session is opened at the developer’s machine, the
debugger provides classical online features like a view of the
state of all the variables for each frame of the call-stack,
the possibility to inspect and evaluate code in the debugged
context, and operations to step into and over the execution
of methods, none of which is possible in current debugging
approaches such as BigDebug.

To ease the debugging of Spark-like applications, we pro-
pose three coarse-grained stepping operations designed for a
Spark-like execution model which complement the stepping
operations from classic online debuggers:
Step to next record. Steps to the next execution of the same

transformation, i.e. to the next record.
Step to next transformation. Steps to the first execution of

the next transformation (akin to BigDebug step over).
Step to action result. Steps until the point in which the next

action is applied (locally). At that point, the developer
inspects the result to evaluate (i) if the execution finished
correctly and (ii) the result of such an action

Combined with dynamic local checkpoints and partition win-
dowing, the developer is then able to debug the execution (i)
locally without network overheads and (ii) on a subset of the
original partition, and not only on the failure-inducing record,
and (iii) with the desired stepping granularity.

D. Live Code Updating

In order to avoid costly redeployments of Spark-like appli-
cations, our approach captures any code change made by the
developer during a debugging session to then propagate the
updated code to the cluster. Code changes captured include
addition, modification, and removal of any method or class.
Once satisfied with the code changes she made, the developer
commits them to update the application code in master and
workers. This happens live, without having to forcedly re-
initialize master and workers, and without re-deploying the
application. Code updates are treated as an operation, i.e. ex-
ecuted from the worker as a task, when the worker is finished
executing the current task if any to prevent concurrency issues.



Once a code change was committed, the developer decides
to either (i) restart the failed partitions, (ii) restart the whole
operation, or (iii) restart from a previous persisted point. The
first option will restart the particular failed operation on the
partitions that caused the previous error, using the updated
code. The second will restart the failed operation on all of
the partitions, including the ones that did not cause an error.
The last will restart the execution from a previous point,
re-executing all the transformations thereafter. It is always
possible for the developers to restart the whole application
by re-executing it on the same workers if necessary.

E. Ignoring Exceptions

Debugging a Big Data application does not necessarily
entail looking at the code: this is the case for instance of
errors generated by dirty data, often the reason for much
time loss [9]. To tackle this problem, we propose to build in
our debugging infrastructure support to automatically ignore
exceptions. To this end, we build on the ideas of acceptability-
oriented computing [13] and relaxed computations [14] which
incorporate a failure model where errors are accepted automat-
ically by the runtime. We believe that such ignoring support
can help developers in avoiding tedious debugging time for
errors that would be discarded anyway, as is the case for many
data-cleaning errors [9].

While in Map/Reduce ignoring can happen only by means
of discarding a percentage of failing tasks, in our approach
developers decide to ignore exceptions globally for all actions,
or locally to a particular action and its related transformations
in the pipeline, and with different percentage thresholds in
terms of records and not of tasks. The global ignore mode and
its threshold are set through the debugger’s API or from the UI,
in a similar way as launching an application in debug mode in
a classic IDE. The local ignore mode is set programmatically
with a new action: ignoreExceptions. This action forces
the ignoring of exceptions of its preceding pipeline and returns
a new DDD with all the records that have not failed. When
an error is ignored, the debugging infrastructure filters out
the failure-inducing record so that the resulting data structure
does not include it (or a transformation of such record).
Developers still gain access to ignored records to verify the
proper execution of the application through the debugger UI.

We also propose an ignoreExceptions: action vari-
ant where the ignore threshold is specified as a per-
centage of the size entire data set. By default, calling
ignoreExceptions without parameters is equivalent to
calling ignoreExceptions:100. When setting a thresh-
old to X, the runtime will ignore at most X%*N of exceptions,
where N is the total size of the analyzed dataset. Each action
(and related transformations’ pipeline) has one local handler
with one ignore counter associated, cumulative across the
different transformations. Different actions can have different
local handlers (with different thresholds). A local handler
always overrides the global handler.

IV. IMPLEMENTATION

We have implemented the proposed online debugging ap-
proach in Spa3. Our prototype is built on Pharo Smalltalk
(v8) [15] and uses several Pharo libraries to manage the
execution and debugging. Zinc [16] is used for HTTP net-
work communication, Fuel [17] for object serialization, and
Epicea [18] for detecting code changes at the developer’s
machine and applying code patches in the workers at the
cluster. In the following, we describe some of the implementa-
tion choices made for ignoring exceptions, and for optimizing
online debugging. Finally, we present the main parts of Spa’s
UI added to Pharo’s IDE that allows developers to code, run
and debug their Spark-like applications.

Handling the Call stack: As detailed in Section III, the
size of transferred execution stacks is reduced using partition
windowing. By transferring a window of records instead of
only the failing record, developers can further debug using
the real data surrounding the failure-inducing record. It is
important to notice that the proper implementation of partition
windowing requires a careful traversal of the execution stack
to apply windowing to any data structure held by the stack,
especially when they reference the original partition or a subset
of it. Collections found to reference the original partition are
cut using the same strategy as partition windowing. Streams
and iterators need not only to be cut, but also the elements
currently being iterated should be set as the pivot of the stream,
and the stream’s position, read limit, and write limit need
to be adapted. While this approach drastically reduces the
amount of serialized data, we are looking into using a custom
communication protocol (instead of HTTP) to further optimize
network overhead.

Live Code Updating: Live code updating is implemented
by leveraging on the DSU capabilities of Pharo, in which
classes and methods can be added, changed, and removed
at runtime. Code changes are recorded using Epicea [18], a
library reifies code changes to the level of class and method
changes. They are first propagated to the master upon com-
mitting. The master applies the code updates and schedules a
task on the workers to perform the update.

Debugger Front End: The front-end of Spa is integrated
with the Pharo IDE. Spa’s GUI allows developers to choose
a global failure model (Debug, Ignore, or Ignore and Debug)
and to set the ignoring threshold. It also allows developers to
specify three application deployment modes: (i) local, where
master and workers are deployed on the current machine; (ii)
standalone, where master and workers are deployed manually
and the front end connects directly to the master by its IP;
(iii) on Hadoop Yarn, in which containers running master and
workers are automatically deployed by Yarn on a (cluster of)
machine(s). Finally, it offers an extension of the Pharo IDE
Playground, called the Spa evaluator supporting asynchronous
execution of code, so that the Pharo image remains responsive
while the code is running on the cluster. Due to space restric-

3More information about Spa is available at https://git.io/JXozH

https://git.io/JXozH


tions, different screenshots of the debugger’ UI are available
with their explanation at https://git.io/JXoEc.

V. QUANTITATIVE EVALUATION

To evaluate our approach we conduct both a quantitative
and qualitative study. In the first, we measure the overhead
and performance of our approach through performance bench-
marks. In the second, we conduct a user study using a mixed-
method experimental design [19] where participants solve
different debugging tasks using two different debuggers: ours
and a re-implementation of BigDebug [3]. We compare both
approaches and evaluate the features of our debugger. In this
section, we describe the performance benchmarks, while in
Section VI we describe the user study.

We conducted several performance benchmarks that aim to
answer the following questions:

RQ 1. How does our debugging approach scale to Big Data?
RQ 2. How much time does online debugging save in com-

parison to replay and checkpoint-based debugging?
RQ 3. What is the overhead of ignoring exceptions, and

how does it scale to a big number of exceptions?
1) Setup: We run our experiments on a cluster composed

of one root node and eight identical slave nodes. Each node
presents an Intel Xeon CPU E3-1240 @ 3.50GHz, 32 GB of
RAM, and 200 GB of SSD Storage. Nodes are connected via
a 1 Gb/s local network.

For all the benchmarks, we deploy Spa on the cluster using
Hadoop Yarn, and we use 1 single-core master, and 20 single-
core workers. Hadoop Yarn takes care of the allocation of the
master and workers on the cluster. The cluster runs Pharo 8.0.0
(x64) on a Pharo 8.3.0 Headless VM. We control the execution
from a machine running an Intel Core i7-7567U @ 3.5GHz
CPU, 16 GB of RAM, and 500 GB of SSD storage. This
machine uses SSH tunneling to communicate to the cluster.

2) The benchmark suite: We run our benchmarks on three
different Big Data applications, commonly used to test the
performance of Big Data frameworks [20]: distributed grep,
wordcount and K-means. In the distributed grep, each line of
the dataset is loaded by the workers in different partitions, and
only the lines containing a certain string are extracted. In the
wordcount, tweets are parsed from a file, and the application
counts how many times each of the words is found in the text.
In K-means, tweets are parsed from a file, and, for a number of
hashtags, tweets containing those single hashtags are clustered
according to how many times they were liked. K-means is
also a representative application to evaluate the ignoring of
exceptions, as it is not heavily impacted in the results by a
lower accuracy [21]. Furthermore, the dataset used for this
application is naturally “dirty”, so ideal for this experiment.

3) Dataset: We run all the applications against a subset of
a dataset containing 100 GB of tweets (represented in JSON),
coming from a recording of the Twitter live stream. The great
majority of the tweets in the dataset are valid (i.e they have
an id, a text, etc.) and are thus correctly parsed. However,
since the dataset was recorded from a live stream, it also
presents around 17% of tweets that were malformed or miss

information that causes the application to fail if they are not
filtered out. In our experiments, when we say that we inject
failures, it means that we leave some of those tweets in the
dataset which generate exceptions during the execution.

4) RQ 1: Does online debugging scale to Big Data?:
This section validates whether our online debugging approach
scales when having big amounts of failure-inducing records.
To this end, we run the K-means application and inject failures
in the execution to assess the overhead of generating and
transferring a debugging session.

Stage 3: K-MeansStage 1: Parsing Stage 2: Extract and group 
Hashtags

Load 
File MapMap GroupByKey Map … getCollection

Map Persistance points  Operation  Iterated

Fig. 3. Overview of the different stages of the K-means application.

Figure 3 shows the different stages in the K-means appli-
cation that conceptually belong together and that are grouped
in pipelined operations in the execution framework 4. These
stages are (i) parsing the JSON dataset in Tweet objects (ii)
extracting the hashtags and related likes and group the tweets
by hashtags, and (iii) running the K-means algorithm. Note
that the K-means stage will be iterated several times for each
of the different hashtags, as indicated by the arrow in the
figure.

For this benchmark, we inject a failure-inducing record at
the beginning of stage 2 of each partition, i.e. all workers fail
just after the tweets are parsed. This allows us to measure the
time needed to handle an exception and generate an online
debugging session. We run the same experiment for datasets
of different sizes, starting with a set of 5 GB up to 50 GB.
We run the execution 20 times for each of the portions of the
dataset, and each amount of parallel exceptions.

Results: Figure 4 shows the average execution time of the
failing stage two, including the time to generate a debugging
session, for each different size of the dataset (shown in
different colors). The results show that the execution time of
the failing stage is related to how many exceptions happen in
parallel, not to the data size. It is slightly higher for bigger
data sizes, but still in the order of hundreds of milliseconds.
Thanks to the use of partition windowing and composite
exceptions, our approach limits to the minimum the amount of
data that needs to be transferred. This experiment shows that
our debugging approach scales to applications that analyze
big amounts of data, and to different exceptions happening
simultaneously in the parallel execution.

5) RQ 2: How much time does online debugging save in
comparison to replay and checkpoint-based debugging?: This
section assesses the benefits of our debugging approach in
comparison to replay and checkpoint-based debugging, using
the results of the same benchmark used for RQ1.

4Due to space restrictions, some operations happening during K-means have
been omitted in the figure, as they are not relevant to our experiments.

https://git.io/JXoEc
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Fig. 4. Execution time of stage 2 when increasing the number of exceptions
happening in parallel, for different sizes of the dataset.

Comparison to replay debugging: To compare our ap-
proach to replay debugging, we employ the same experiment
as the previous section. Figure 4 showed that the execution
time of stage 2 including the time of creating a dynamic
local checkpoint, is lower than 400 milliseconds. As such, we
deduce that the overhead of the debugging infrastructure on
the execution is constant around hundreds of milliseconds and
independent of the amount of data or the number of parallel
exceptions. In a replay debugger, an error at the beginning
of stage 2 requires to replay the whole execution from stage
1. The execution time of stage 1 in the previous experiment
amounts to 46 seconds for the 5 GB file and up to 448
seconds for the 50 GB file. These results show that generating
a dynamic local checkpoint is convenient in terms of runtime,
since running again stage 1 takes 100 times more for the 5
GB file and 1000 times more for the 50 GB file.

Comparison to checkpoint-based debugging: To compare
our approach to checkpoint-based debugging, we should first
note that the experiment from previous section represents
their best-case scenario: the developer manually has set a
checkpoint at the beginning of stage 2, so a checkpoint-based
debugger does not need to replay any execution. However,
this quickly changes when an error occurs in the middle or at
the end of a long stage, as explicit checkpoints are normally
not created in the middle of a stage for performance reasons.
In those cases, a checkpoint-based debugger would have to
replay part of the stage, which is a more realistic case for the
comparison. Hence, in this experiment we inject the failure in
the middle of stage 1 by removing an if-test for null.

In this experiment, each worker reads a part of the dataset
and immediately starts parsing tweets, and iterates the execu-
tion 20 times. Since the previous benchmark showed that the
size of the file does not impact the time to create a dynanmic
local checkpoint, we use a 20 GB dataset.

The results show that each of the workers takes on average
between 48 and 54 seconds to read its portion of the file
from disk. The execution then fails, on average, between 100
and 500 milliseconds after starting the actual parsing, and
the execution terminates after an average of 55.7 seconds of

total execution time. When using a checkpoint-based solution,
this time would need to be replayed to get to the error,
since there is no persisting operation between the reading
and the parsing. Furthermore, our solution does not require
to manually add breakpoints or checkpoints to trigger the
debugging. In comparison, as shown in Figure 4, the overhead
of getting a debugging session with our approach amounts to
hundreds of milliseconds.

From the experiments conducted for RQ2 we conclude that
our approach provides faster access to a debugger by avoiding
replay operations that both replay and (partially) checkpoint-
based debugging approaches for Big Data rely on.

6) RQ 3: What is the overhead of ignoring exceptions, and
how does it scale to a big number of exceptions?: This section
first assesses the overhead of the infrastructure for ignoring
exceptions on a failure-free execution, and then evaluates the
scalability of ignoring an increasing number of exceptions.

a) Assessing the overhead: We assess the overhead of ig-
noring exceptions by turning the “ignore” mode on, but letting
the applications complete their execution without errors. In
this way, we simulate a setup in which the developer correctly
filtered the initial dataset, but still wants to leave the “ignore”
or “ignore and debug” modes on, in case something was
missed in the data-cleaning process. We run this benchmark on
the three applications using three portions of the database of
increasing size (15GB, 30GB, and 45 GB), using as baseline
the execution when the ignoring and debugging support is
switched off, and comparing it to the execution with it turned
on. Each application is executed at least 10 times, and a
maximum of 25 times (depending on run-time).

App Tbaseline Tignore ∆ (%)
Grep 15G 0,77 ± 0,35 0,76 ± 0,30 -0,60
Grep 30G 1,09 ± 0,13 1,16 ± 0,28 6,52
Grep 45G 1,54 ± 0,15 1,60 ± 0,11 3,92
WC 15G 82,96 ± 5,42 83,99 ± 3,56 1,24
WC 30G 170,38 ± 8,98 172,86 ± 10,55 1,46
WC 45G 446,56 ± 18,90 433,38 ± 22,72 -2,95
KM 15G 171,15 ± 1,08 180,11 ± 0,69 5,24
KM 30G 263,44 ± 0,84 273,91 ± 1,06 3,97
KM 45G 385,62 ± 0,93 392,44 ± 1,43 1,77

Fig. 5. Runtime (in seconds) and overhead of running Grep, WordCount
(WC), and K-means (KM) applications with and without ignore mode active.

Results: Figure 5 displays the runtime of the different
applications for different sizes of the datasets, with the ignore
mode turned off (Tbaseline) and on turned on (Tignore). We report
the average time of the multiple iterations with the standard
error. The last column presents the overhead of the ignore
mode in terms of percentage of (Tbaseline).

The table shows that the overhead varies between -2,95% to
+6,52%. Looking more in detail at each application, we can
see that Grep, the fastest benchmark, shows a big variation
among the different data sizes, starting negative, then growing
to 6%, and then lowering to 3,9%. The confidence intervals,
however, overlap, which makes us conclude that there is no
significant performance degradation. On the other hand, a
more consistent overhead pattern appears in both WordCount
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Fig. 6. Run-time when ignoring an increasing amount of exceptions.

and Kmeans: the overhead seems to lower when increasing
the amount of data.

All in all, the activation of the ignore mode always intro-
duces overhead when starting to execute a particular action,
since it needs to initialize a replicated counter to count the
possible amounts of exceptions. However, we observe that the
higher the runtime of an operation, the lower the overhead.

b) Performance impact of ignoring an increasing num-
ber of exceptions: We now assess the performance impact
of ignoring exceptions, when exceptions raised during the
execution are ignored. To do so, we use the first phase of the
K-means application, in which the tweets are parsed and then
grouped by their hashtag. We gradually leave invalid tweets in
the dataset to cause an exception when extracting the hashtags.
It has to be noted that, we did not inject more invalid tweets
in the dataset than the ones already present.

We distribute a fixed portion of the dataset among the
workers and filter out all the failure-inducing records (a.k.a.
nil records). We test using a dataset of 4.003.315 valid non-
deleted tweets (roughly 20 GB of data), and we inject at every
iteration 80.000 failures (corresponding again roughly to 2% of
the original records). Since the original dataset presents 17%
of failure-inducing records, we set the ignoring threshold to
50%, so we are sure to ignore all errors. We test the K-means
application and measure the total time to completion.

Figure 6 displays the results of the experiment. Every execu-
tion was run 50 times, and the measure represents the amount
of time in milliseconds it takes to parse and group tweets
with the K-means application while injecting an increasing
number of failure-inducing records. The results show that
the runtime increases linearly with the number of ignored
exceptions, with the overhead of ignoring a single exception
ranging between 3 and 7 microseconds. We believe that this
is an acceptable overhead when compared to re-executing the
whole application possibly multiple times.

VI. QUALITATIVE EVALUATION

In the qualitative evaluation, we assess the usability of our
debugger in a study with 17 subjects that tested our debugger
and a reimplementation of the closest related work, namely

BigDebug [3], on top of the Spa runtime5. The user study
measures both the time subjects take to solve the assignments
with each debugger, and the impact of the features of both
debuggers on the subject perception of debugger helpfulness,
debugging difficulty, and number of redeployments. In the
remainder of this section, we first describe the methodology
of the study and then discuss different research questions.

1) Methodology: For this user study, we use a strong
experimental design [22] to isolate and test the effect of the
independent variable on the dependent variable. In particular,
we use a within-participant design [22]–[24] in which all
participants are exposed to each experimental condition, and
fill in a post-test after being exposed to each of the conditions.

Experimental conditions: Each of the participants was
exposed to two experimental conditions:

• Solve a debugging assignment using the Spa Debugger
• Solve a debugging assignment using BigDebug
To keep under control different external validity threats we

randomize the order in which the participants are exposed to
the two experimental conditions. We create two groups, a first
group at first exposed to debugging with Spa, and later with
BigDebug, and a second group exposed to the debuggers in
the opposite order. We then assign randomly each participant
to one group, trying to balance the size of the groups.

Throughout the study, we use two debugging assignments,
always in the same order for both groups. Each debugging
assignment presents two bugs in one application; the first bug
is related to the formatting of the input data, and the second
one to a logical error in the application ( the final result is not
correct).

2) Experiment setup: We conduct the study with 17 volun-
teer subjects (9 master students and 8 researchers), randomly
split into the two different groups. Each participant executes
the two assignments with both debuggers, but in a different or-
der. The master students at least had followed (and passed) two
master-level courses in which they had to program a project in
Pharo Smalltalk and in Spark, respectively. All researchers had
experience using Pharo Smalltalk, and knowledge of Spark.

a) The debugging tools: Participants employed the same
IDE, i.e. the Pharo Smalltalk environment including Spa, but
they interacted with the two different front-end debuggers
corresponding to the Spa Debugger presented in this paper,
and a reconstructed version of Big Debug on top of the Spa
runtime. To keep the participants as unbiased as possible, the
two debuggers are randomly renamed Debugger A and B,
respectively, in all the presentations and in the debugger’s UI.

The Spa Debugger offers all of the features described in
this paper, but the ignore mode is enabled exclusively in
global mode (i.e, we did not expose the participants to the
local ignore mode) in order to limit the explanations to a
similar length than BigDebug’s explanations. The BigDebug
reimplementation provides the key features of the original
work [3], namely guarded watchpoints, simulated breakpoints,

5In this section, Spa Debugger refers to our debugger, and BigDebug refers
to the reimplementation of BigDebug [3] in Spa.



stepping and resuming, record skipping, record substitution,
code patching, and tracing to input. However, instead of being
a separated web GUI as in [3], we integrate it in the Big
Data framework’s IDE, i.e Pharo Smalltalk. Screenshots and
description of the UI are available at https://git.io/JXoEk.

b) Experimental material: Before doing a particular as-
signment, all the participants are handed a pdf describing the
application and the bugs they will be looking for, as well
as a cheat sheet containing information about the debugger,
the framework’s API, and the language syntax. Furthermore,
they also have access to the pdf of the presentation, including
screenshots from the demo6.

c) Structure of the study: Due to COVID-19 restrictions,
we run the study in timed sessions in a campus room or a
virtual one. The study, in both online and on-campus versions,
has the same structure: First, a 15-minutes presentation and
hands-on demo about programming with the Spa’s model (cf.
Section II-A) without debugging. Before each assignment,
there is a 20-minutes presentation about the debugger they
will use and a hands-on demo of debugging an application. At
this point, the participants are handed the material and have 45
minutes to complete each assignment. Upon completion of the
first assignment, they fill in the first part of the post-test that
includes general questions about their experience in debugging
and developing software, and questions about the debugger
they have used. Then, after a small break, we repeat the same
process for the second experiment (presentation of the second
debugger, second assignment, post-test). Throughout the study,
the host of the experiment is present in the (campus or virtual)
room, answering privately to questions about the debuggers,
as well as helping with technical issues.

d) Debugging assignments: In each assignment, partici-
pants have to solve two bugs: a first one causing an exception,
a second one producing wrong results. Before tackling the
second bug, they have to solve the first one. The system gives
them feedback when they have solved the first and the second
bug. Furthermore, the system automatically logs the activity
of the participants while debugging, as well as the final code
of the applications when they finish the experiment.

The first assignment is the debugging of the Twitter K-
means application described in Section V-2. For the first bug,
we previously deleted the code that cleaned the data, which
leads to data-cleaning errors because of deleted tweets that
missed the hashtags. For the second error, we previously
introduced a bug in the application’s logic: the original dataset
included tweets with non-ASCII characters that could not be
displayed correctly within the final result. Those tweets have
to be identified and removed.

The second assignment involves debugging an implemen-
tation of the popular ID3 decision tree algorithm [25] that
analyzes a set of Amazon Reviews to find out which of
the features of the review (e.g., length of the text, amount
stars, etc.) makes the review the most helpful (i.e. produced

6All the experimental material is available at https://soft.vub.be/∼mmarra/
userStudy/UserStudyMaterial.zip
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Fig. 7. Time to find the first bug with both debuggers (C.I.:80%).

the highest count of the helpfulVotes feature). For the
first bug, we modified the dataset by removing some of the
features for some of the records, so that a data-cleaning error
would appear when the application is first run. For the second
bug, a wrong classification of the number of stars makes the
algorithm return a final decision tree that is not correct. The
wrong classification code has to be identified and corrected.

3) User study: The conducted user study aims to answer
the following questions:

RQ 4. Does the debugger impact the time to first bug?
RQ 5. Is there a difference in the overall debugging expe-

rience?
RQ 6. Did the code-updating capabilities influence the num-

ber of re-deployments?
RQ 7. How the features of the Spa Debugger were valued?
We now elaborate on the answers to different questions

asked in the post-test to address our research questions.
a) RQ 4: Does the debugger impact time to first bug?:

To answer this question, we automatically measured the time
that each of the participants took to correctly identify and
resolve the first bug. We did this for both applications and
both debuggers. Figure 7 shows the average time to find the
first bug, aggregated across the two applications and the two
debuggers. The results show that the average time to find the
first bug is lower for the Spa Debugger by 493 seconds (around
7 minutes). The confidence interval, calculated with an 80%
of confidence, also shows that the Spa Debugger did reduce
the time to find and solve the first bug.

Regarding the second bug, we do not report the full num-
bers, since the success rate was low for both debuggers,
making the sample too small to draw conclusions. Only 6/17
participants found the second bug across the two applications
while using the Spa Debugger, and 4/17 while using BigDe-
bug. This may indicate that we underestimated the complexity
of the second bug and that the 45 assigned minutes were not
enough to solve both bugs.

b) RQ 5: Is there a difference in the overall debugging
experience?: To answer this question, we asked in our post-
test how much each debugger helped them in identifying
the cause of the bugs, and whether debugging that particular
application was difficult. Both could be answered using a
Likert scale from 1 to 5 (1=Not at all, ..., 5=Very much).

https://git.io/JXoEk
https://soft.vub.be/~mmarra/userStudy/UserStudyMaterial.zip
https://soft.vub.be/~mmarra/userStudy/UserStudyMaterial.zip
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How much did the debuggers help in solving the bugs?:
Figure 8 presents a violin plot that shows that for BigDebug
answers cluster around 2, while they cluster around 4 for Spa.
The average, shown by the dot, is around 2.5 for BigDebug,
and just above 4 for Spa. From these results, we conclude that
the participants perceived as advantageous the features of the
Spa Debugger, while they did so less for BigDebug.

How difficult was debugging each application?: Figure 9
displays the answers of the participants to this question.
When debugging with our debugger, 29.4% of participants
declared that debugging the application was difficult/very
difficult, against 47% for BigDebug. Accordingly, 35.6% of
the participants declared that debugging the application with
the Spa Debugger was easy/very easy, against 17.7% for
BigDebug.

These results, together with the ones of the previous ques-
tion, make us believe that debugging with our approach was
perceived as easier and more helpful than with BigDebug.

c) RQ 6: Does the debugger influence the number of re-
deployments?: First of all, it is important to mention that the
UI of both debuggers featured a button ”Redeploy” which
allowed participants to restart master and workers using the
updated code-base, i.e perform a full redeployment of the
application. In the post-test, we asked the participants how
many times they had used the redeploy button.

Figure 10 shows a violin plot with the answers. We observe
a clear difference between the two debuggers: with the Spa
Debugger, on average participants had to redeploy 1 time, with
most of them being clustered between 0 and 3. For BigDebug,
participants re-deployed on average 5 times, being clustered
between 4 and more than 5 times. Note that the average of
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Fig. 10. Boxplot of redeployment count across the two applications with the
two different debuggers.
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Fig. 11. Likert scale showing how useful each feature of the Spa Debugger
was rated by the participants.

BigDebug might be even higher because the questionnaire only
allowed ”more than 5” as the maximum value.

The number of lower redeployments for the Spa Debug-
ger can be attributed to the live code-updating functionality,
which allows to apply code patches without requiring a full
redeployment. We discuss the general appreciation of the live
code updating functionality in the next research question.

d) RQ 7: How the features of the Spa Debugger were
valued?: To answer this question, we analyze the results of
two post-test questions: one that asked directly how useful they
would rate the debugging functionalities of the Spa Debugger,
and one to check which feature of each debugger participants
missed when using the other one.

How useful are the advanced debugging functionalities of
the Spa Debugger?: To answer this question, participants were
asked to rate how useful the debugger’s features were using a
Likert scale from 1 (not at all) to 5 (very useful). Particularly,
we asked them how useful they found fine-grained stepping,
coarse-grained stepping, ignore mode, and live code updating.

Figure 11 shows the answers for each feature. We observe
that, except for the ignore feature, the majority of people gave
a 4 or 5 rating to both kinds of stepping, as well as to live
code updating. Actually, live code updating is the feature best
rated (as it did not received any rating below 3). On the other
hand, the ignore functionality was considered neutrally useful
(with a rating of 3) by the majority of the participants.

Is there a feature of a debugger that you missed when
using the other debugger?: This question was asked for both



debuggers after the participant had completed both the assign-
ments. While no participant indicated a feature of BigDebug
that was missed in our debugger, different participants indi-
cated several features of our debugger as missing in BigDebug.

Feature N of participants
Local debugging 11/17
Live code updating 6/17
Full breakpoints 3/17
Abstractions over the exceptions 1/17

Fig. 12. Features of the Spa Debugger that were missing in BigDebug

Figure 12 shows how many participants indicated in their
answer one of the features of the Spa Debugger that they
missed when debugging the assignment with BigDebug. Ex-
amples of answers that were classified as the ”local de-
bugging” feature are: ”the interactive debug session” and
”Normal stepping, easy browsing and editing code”. The other
classifications took into consideration whether they explicitly
mentioned the feature in their comment. Interestingly, one
participant explicitly answered: ”Abstractions over the excep-
tions” as a feature they missed in BigDebug.

From the results in this question, we conclude that the
participants generally appreciated the features of the Spa
Debugger. This is also confirmed by the answers to the
question ”Which feature of Spa did you find useful?”, in which
16 out of 17 participants selected ”Live Code Updating”,
15 selected ”Debugging locally a remote exception in an
interactive way”, and 9 selected ”Breakpoints on parallel
execution” and ”Advanced Stepping Operations”.

4) Threats to validity: There are different factors that may
have influenced the results of our user study:

a) Number of participants and participant profiles:
Since we required a particular profile of participants and we
had a limited time frame, we were only able to recruit 17
participants. For this reason, we opted for a within-participants
study, which allowed us to maximize the data points. This
approach led to the presence of more explanation of the
tools, since the computational model and both debuggers were
explained to the participants. Furthermore, by having to use
both debuggers, participants may have been affected by fatigue
more than if we had run an inter-participant study.

b) Bugs representativity and difficulty: The assignments
were both based on popular algorithms for data analysis,
although not all our participants were knowledgeable of them.
The bugs, however, were not taken by common reports but
from personal experience in debugging the applications. This
may have led to too difficult bugs to be solved in the time
frame of the assignments; while all of the participants except
one solved the first bug in both applications, only 6 and 4
participants solved correctly the second bug in the first and
second assignment, respectively.

c) BigDebug reproduction: Participants used a reimple-
mentation of BigDebug since using two different runtimes and
languages would have made both the setup and experiments
more complex. To reproduce BigDebug, we used the infor-
mation available on the original paper [3], the project website

and demo videos publicly available, as we did not manage to
successfully build BigDebug from its public repository.

VII. RELATED WORK

This section discusses related work on debuggers for Big
Data frameworks, and on acceptability-oriented computing.

a) Big Data debuggers.: Most of the debugging solutions
for Big Data consist in replay debuggers [26], such as Arthur
[2] and Graft [27], that record and store events of one execu-
tion to then replay them later for debugging. These solutions,
however, require tedious replay times and advanced knowledge
of which executions to record. More recently, Daphne [8] and
BigDebug [3] combined replay debugging with some simil-
online debugging capabilities: Daphne introduces breakpoints
for DryadLINQ [28] queries, allowing developers to debug
remotely a certain node or to replay locally a certain execu-
tion. BigDebug introduces simulated breakpoints to add some
online debugging primitives (such as stepping), by partially re-
playing the execution from the last checkpoint with respect to
where the breakpoint was placed. As discussed in Section V-5,
this may still introduce relevant replaying times. BigDebug
also offers some post-mortem debugging capabilities, such as
crash analysis through data provenance, to detect which part
of the execution failed, that has been further studied in BigSift
[4]. Both the solutions, however, are post-mortem and require
replaying different parts of the execution. Finally, IDRAMR
[11] is a debugger for Map/Reduce applications. Compared to
our approach, it is not generalized to work with a broad Spark-
like API, does not present partition windowing, and does not
support debugging a pipeline of operations on a distributed
data structure.

b) Acceptability-oriented computing applied to Big
Data.: Acceptability-oriented computing was first defined
by Rinard [13] as a failure-oblivious system that describes
the properties that state and behaviour that a system must
preserve for a program’s execution to be acceptable, and that
then monitors, and enforces these acceptability properties and
eventual violations. Later, Carbin et al. [14] further define
relaxed programs as programs that “have been extended with
additional nondeterminism to relax their semantics and enable
grater flexibility to the execution”. The concept of relaxed
programs and failure-oblivious systems were later used to
prevent buffer overflows in C [29], and to test the reliability
of Java programs [30].

To the best of our knowledge, such an approach was never
applied as such to Big Data applications. We have found
however in Hadoop Map/Reduce a static parameter allows
developers to define a certain percentage of tasks that are
allowed to fail. However, this parameter is very coarse grained:
it refers to tasks, as opposed to records as in our approach.
Furthermore, this relates to all jobs that will be executed,
and cannot be changed, added or removed at runtime. Our
approach, instead, allows developers to set a threshold to
ignore exceptions in specific parts of the execution, that can
be set dynamically at run time.



VIII. CONCLUSION

In this paper we explored and evaluated an online debugging
approach tailored to Spark-like applications. We propose a
practical always-active debugging approach, that combines
ideas of out-of-place debugging [10] and dynamic local check-
points to allow online debugging of Spark-like applications.
Debugging of a remote exception/breakpoint happens locally,
and is augmented with advanced stepping operations to im-
prove the debugging experience. To ease the re-deployment of
the application, the debugger supports live code updating in the
cluster. Furthermore, our debugging approach features built-in
support for automatic ignoring of exceptions, that developers
can use to avoid tedious data cleaning errors.

We show using several benchmarks that the debugging
overhead is comparable or better to replay and checkpoint-
based debugging and that our debugging approach scales well
when increasing the size of the analyzed data and the number
of parallel failures. Moreover, we show that the ignoring
exceptions infrastructure introduces negligible overhead on a
non-failing program, and that the overhead of ignoring failures
grows linearly with respect to the number of ignored failures.

We complement our quantitative evaluation with a user
study with 17 subjects, in which we (i) compare our approach
to the closest related work and (ii) assess the usefulness of the
novel features of our debugging approach. The results show
that our approach improves the time to find the solution to
a bug, made finding the bug easier, and reduced the amount
of full re-deployments of the applications. Furthermore, par-
ticipants generally evaluated positively the features of our
debugger, especially live code updating and the possibility to
do fine-grained stepping.We conclude that the proposed online
debugging approach presents an improvement for debugging
Spark-like applications.
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