
A debugging approach for Big Data applications in Pharo

Matteo Marra
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
mmarra@vub.be

Clément Béra
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
clembera@vub.be

Elisa Gonzalez Boix
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
egonzale@vub.be

Abstract
Big Data applications are more and more popular; they typi-
cally analyze big sets of data from different domains. Many
frameworks exist for programmers to develop and execute
their Big Data applications such as Hadoop Map/Reduce and
Apache Spark. However, very few debugging support is cur-
rently provided in those frameworks. When an error hap-
pens, developers are lost in trying to understand what hap-
pened from the information provided in log files. Alterna-
tively, few solutions allow to replay the execution, but they
are slow and time-consuming. In this paper, we present an
online approach to debug Big Data applications. We first in-
troduce Port, a framework on top of Hadoop Yarn that al-
lows to deploy and execute Pharo Map/Reduce applications.
We debug applications deployed on such framework using
IDRA, a novel online debugger for Pharo applications. With
IDRA the running application can be debugged in a central-
ized way, and the code of the application can be dynamically
updated to fix bugs.

Keywords Distributed systems, software tools, debugging,
Big Data, Map/Reduce

1. Introduction
Hardware advances in storage capacity and CPU processing
have given rise to the concept of Big Data, characterized by
the so-called 3 Vs (Volume, Velocity and Variety). As a re-
sult, novel software platforms have emerged to analyze and
store such large data sets in a scalable way. The two most
prominent programming models are Hadoop Map/Reduce
[6] and Apache Spark [2], which typically embrace a batch-
oriented data processing to achieve a high parallelisation of
data analysis. Current trends indicate that the volume, veloc-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

IWST ’18, September 10–14, 2018, Cagliari, Italy

c© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN ——. . . $15.00

DOI: https://doi.org/——

ity and variety of data are increasing quickly due to an explo-
sion on diversity and number of sources of information (as a
result of the digitalization of data, e.g. smart objects and sen-
sors, interconnectivity of data and popularity of social media
data [18]). This poses challenges for Big Data frameworks
to be able to meet the new requirements of the emerging
real-time streaming data processing applications. The 2017
Hadoop perspective annual report by Syncsort [23], a lead-
ing company in (Big) data integration, estimates the need
of new tools to simplify the interaction of the programmers
with different evolving frameworks and datasets.

Recent work has shown that Big Data platforms provide
little or no support for debugging software failures [12].
Developers mostly rely on log files. However, such post-
mortem debugging technique requires many hours of anal-
ysis just to spot a simple problem [9]. Even though special-
ized tools to visualize and analyze logs for Big Data plat-
forms exist [20], the generated logs can grow to the order of
terabytes of data. This makes it extremely difficult to under-
stand production failures, since it is often tricky to extract
enough information about a failure from log files [21]. To
overcome the use of log files, recent work was focused on
replay debuggers, such as Arthur [5]. Replay debuggers al-
low to replay the execution of the program after it failed to
understand where the problem lays. Replay times, however,
can increase exponentially in such systems, and it might take
hours and multiple replays to spot a particular bug [12]. In
addition, it is difficult to apply such techniques on data pro-
cessing applications that continuously analyze a stream of
data.

Online debugging, often called breakpoint-based debug-
ging, is a debugging technique that allows to debug a pro-
gram while it is executing. Examples of online debuggers
are GDB [11], the Python Debugger [10] and the Pharo De-
bugger [4]. Online debugging can avoid such tedious replay
steps, that may take up to hours in complex distributed appli-
cations. In this paper, we propose a novel online debugging
technique for debugging distributed applications. More con-
cretely, we adapt out-of-place debugging[17] for Big Data
applications. An out-of-place debugger transfers the debug-
ging session to an external process, in which the developer

can debug in a safe way. Debugging is centralized, allowing
which different nodes to be connected and debugged from
an unique point. Our technique also provides dynamic code-
update of the running system, allowing to update it without
tedious deployment times.

In prior work, we built an out-of-place debugger in Pharo
called IDRA[17]. This paper focuses on applying IDRA to
a Big Data environment. To this end, we introduce Port, a
Smalltalk framework on top of Hadoop Yarn [3], a widely-
used resource manager for Big Data. Port can deploy and
manage different Pharo environments in different nodes of
an existing infrastructure, abstracted using Yarn. To model
the distributed computation, we introduced an extensible
Master/Worker framework in Pharo. An example of exten-
sion is a Map/Reduce framework, that we use to model our
Big Data applications. Finally, we model IDRA to support
such execution model.

In Section 2 we present some state of the art in debugging
Big Data applications. Section 3 gives a background on Yarn
and presents our distributed framework: Port. In Section 4
we present the execution model used by Port applications
and we provide a debugging scenario derived from [12].
Section 5 introduces IDRA, our out-of-place debugger, and
how we extend and use it to debug our debugging scenario.

2. State of the Art
In literature, there are different solutions to debug Big Data
applications. Most of them are purely post-mortem, provid-
ing debugging capabilities only after the execution of the ap-
plication failed. Such approaches normally need more than
one iteration to actually capture the context of the bug and al-
low debugging. Among these debuggers we can find Arthur
[5], a debugger for Apache Spark, where multiple replays
are necessary to find the point of failure. Another solution
is Graft [22], a debugger for Apache Giraph [1]. When us-
ing Graft, the developer needs to indicate beforehand which
particular points of the execution to record, to then be able
to replay them afterwards. More recently, Daphne [13] and
BigDebug [12] combine replay debugging with some inter-
esting online debugging capabilities.

Daphne is a debugger for DryadLINQ [19] which pro-
vides a runtime view of the running system and of the query
nodes generated by a LINQ query. It allows developers to
add breakpoints to inspect the state and start and stop com-
mands through the Visual Studio remote debugger. Debug-
ging is done directly on the client where the breakpointed
node is executing, interrupting it in order to debug it. The
execution of a specific node can be replayed locally to ana-
lyze its execution using the same debugging primitives.

BigDebug is a debugger for Apache Spark [2] which in-
troduces the concept of a simulated breakpoint that does not
stop the execution nor freezes the system waiting for the res-
olution of the breakpoint. Instead, it stores the information
necessary to replay the environment and then continues the

execution. After the simulated breakpoint, the developer can
proceed debugging in a sort of step-by-step execution on
the remote node. BigDebug also provides watchpoints us-
ing guards. A watchpoint watches some expression using a
predicate function. The developer can then lively visualize
the value of the watched expression when the predicate is
satisfied.

While Daphne and BigDebug feature some online debug-
ging capabilities, they still fail to correctly capture the con-
text that produced a bug. For instance, BigDebug allows de-
velopers, through the use of simulated breakpoints, to re-
motely debug the application. However, when an exception
is raised, the execution stop and the debugger does not cap-
ture immediately the context of the bug. Instead, a crash
analysis will be used to detect the latest checkpoint before
the bug, to then replay the execution from there to reach the
bug.

Using BigDebug developers can change code during de-
bugging of a replayed failure, but only to clean a crash in-
cluding record. Such changes are not applied to the overall
system. Major code changes that modify the behaviour of
the application need to be done offline and re-deployed on
the system. When debugging after placing (and reaching) a
breakpoint, some minimal dynamic code update are allowed.
However, the new changed function cannot, for example, re-
turn a different type than the original one.

In this paper, we study online debugging techniques that
can capture the context of the bug when it happens with-
out the need of replay steps. The debugging cycle should
also include updating the code of the application while it is
still running, enabling to fix some code without stopping, re-
deploying and restarting all of the components of the system.
We prototype these functionalities in IDRA, an out-of-place
debugger for applications written in Pharo. We believe that
Smalltalk provides a good platform to fast prototype novel
tooling for Big Data applications. Nevertheless, the ideas of
IDRA could be translated to other programming platforms
that (1) provide reflective capabilities that reify the execu-
tion stack and provide access to a debugging interface, or
(2) allow to introduce virtual machine modifications (when
reflective capabilities are limited).

3. A Big Data framework for Pharo
Before explaining our solution to debug Big Data applica-
tions, we first provide details about the underlying deploy-
ment platform used for Big Data applications.

Rather than creating a Big Data framework from scratch,
we decided to build on an existent Big Data infrastructure,
namely Hadoop Yarn [3]. Yarn handles the configuration
and execution of the system, providing scheduling and nodes
management. It is widely used in industry because of its scal-
ability (it can support thousands of nodes) and is commonly
used to deploy frameworks such as Map/Reduce and Spark,
especially when the size of the system increases. Using Yarn

allows us to abstract on the properties of the system (avail-
able memory, available CPU, general availability of a node,
...).

Figure 1 shows the deployment architecture of Yarn.
When deploying an application, an application master is
set up. The application master can then spawn different con-
tainers (using an arbitrary shell command). Such containers
are used to execute code of the actual application, and they
only report their state to the application master.

Application
Master

YARN

Container

YARN

Container

YARN

Figure 1. Architecture of Yarn

Upon allocating a container, the application master inter-
faces with the Yarn framework to know where (i.e., on which
node) and when to allocate the container. All the resource
constraints (e.g., requested memory vs available memory)
are handled by Yarn. If a container cannot be deployed in
a particular moment, it will be deployed when the resource
constraints are satisfied.

Note that Yarn can deploy any kind of shell-command,
i.e. it can execute any kind of application. In this work,
we built a framework called Port that allows developers to
deploy parallel Pharo applications on top of Yarn. Port is
composed of two components:

PHOY (PHaro On Yarn) is an instance of a Yarn applica-
tion master that can spawn different containers running
Pharo images. The application master offers a REST in-
terface to handle external monitoring and requests. This
interface allows developers to deploy new containers
with a particular image and parameters. PHOY also pro-
vides an interface to know which containers are running,
their IP addresses and other useful information.

Lighthouse is a Pharo tool to control the different contain-
ers deployed by PHOY. It interfaces with PHOY using
simple HTTP Post requests, and handles the different
containers. Lighthouse allows to submit different appli-
cations to the system.

4. Programming Big Data applications in
Pharo

In order to distribute a Pharo application on top of a Big Data
framework like Yarn, we also need to extend Pharo with a
parallel programming model. In this work, we model Big
Data applications in Pharo using a Master/Worker model.
Such an approach is akin to the one used in Apache Spark
[2]. The Master/Worker model consists of one master pro-
cess which acts as coordinator, and many workers ones. The
master is responsible for assigning work to the workers and
coordinating results. The workers execute code instructed by
the master, and may return to it the result of the computation.

The Master/Worker framework is good to model the ex-
ecution, but does not provide many abstractions to actually
build applications. Is is a good basis where to build other
parallel models on top of it, such as Map/Reduce [6]. Hence,
we extended our Master/Worker programming model to al-
low Map/Reduce-like applications.

A Map/Reduce application is mainly composed by two
functions: a map function, that is mapped to all the elements
of the input collection, and a reduce function, executed after
the map, that can reduce all the results to the final one. In our
model, a Map/Reduce master can schedule map or reduce
tasks on the Map/Reduce worker and handle their result.
The master is responsible of parallelizing the computation
between the different workers.

Map/Reduce by example
In order to show how Pharo developers can implement
Map/Reduce applications, let us consider an election pool
analyzing application. The application has been proposed
and employed by BigDebug as debugging scenario [12]. It
analyzes election pools logs in a parallel way. The analyzed
log contains records with the preference of the interviewed
person, its region of residence and an UNIX timestamp
of when the interview was made. For example: Toscana
Rossi 1517702400.

Listing 1 shows the core code of the election pool analyz-
ing application. The map: method checks if the timestamp of
the interview is valid, and filters the interviews for a region
(Toscana). The reduce: method reduces all the valid entries
into an unique dictionary, which will include the information
on the preference for each candidate.

Listing 1. The core code of the election poll analysis appli-
cation.

1 PollsAnalyzer>> map : aLine
2 | splitted |
3 (line includesSubstring : ’ Toscana ’) ifTrue : [
4 splitted :=aLine substrings : ’ ’ .
5 (((splitted at : 3) asInteger)
6 >1517616000 ifTrue : [
7 ↑splitted .]] .
8 ↑ n i l .

9
10 PollsAnalyzer>> reduce : aSetOfVotes
11 | candidate | ↑aSetOfVotes
12 inject : Dictionary new
13 into : [: dict : line |
14 line ifNotNil : [candidate := line at : 2 .
15 dict at : candidate ifPresent : [: val | dict at :
16 candidate put : val+1] ifAbsentPut : 1]]

Enabling Map/Reduce in Pharo. In practice, the Map/Re-
duce programming model is enabled by an internal library.
In this library, an application is represented by a class that
implements the map: and the reduce: method as shown in
listing 1. The execution is modelled on top of the master/-
worker model. The master partitions the data and instructs
the different workers of the computation that they have to
do. The master can both send the data to be processed di-
rectly to the worker, or instruct them on where to find the
data on the distributed file system.

5. Debugging Port applications
The Port framework described in section 3 can deploy
Map/Reduce Pharo applications such as the election pool
analyzing application. We now describe the deployment of
the election pool analyzing application which features the
same bug as described in the original implementation in
BigDebug[12]. We first describe the bug, then our debug-
ging approach and finally how to solve the bug with our
solution.

5.1 Debugging scenario
When the developer tests the election pool analyzing appli-
cation on a local instance of Port, on a reduced copy of the
dataset, the application works fine. However, when the appli-
cation is executed on a cluster using Port, one of the worker
fails. With the default Pharo/Yarn log-based debugging sup-
port, such failure is pretty difficult to handle: containers are
deployed remotely, running without an user interface, and by
default crash if an error is raised and produce a log.

The bug is actually caused by one of the records, Bianchi
Toscana 02-03-2018. While the program was expecting a
(numeric) UNIX timestamp, the record presented a String-
based timestamp that cannot be parsed by asInteger, re-
turning a nil, hence causing a doesNotUnderstand:.

The stack-trace provided in the crash-report shows that
there was a UndefinedObject doesNotUnderstand:

#>. However, it does not provide any information on the
data that caused the exception. Alternatively, we could have
tried to install a remote online debugger such as TelePharo
[14] upfront, to monitor the execution. Deploying many in-
stances of such remote debugger can be tedious: having 1000
containers would mean opening 1000 different debuggers
connections, on 1000 different ports on a single remote ma-
chine to handle possible errors.

5.2 IDRA
To debug Big Data programs such as the one described in the
previous section, we propose to use centralized online de-
bugging which we prototype in IDRA [17], an out-of-place
debugger for Pharo applications. In a nutshell, IDRA sup-
ports online debugging by transferring the execution state
of the debugged application to the local developer’s ma-
chine. The developer proceeds then to debug as if the appli-
cation was originally a local application. The remote appli-
cation can then continue executing the next task that should
process. In previous work, we developed IDRA as an out-
of-place debugger for long running applications and cyber-
physical systems [15, 16].

In this work, we apply IDRA to debug Map/Reduce ap-
plications. We will first explain the key concepts in IDRA,
then how we adapt it to support debugging of Map/Reduce
applications.

IDRA architecture. Figure 2 depicts the architecture of
IDRA when working on its default configuration: a single-
threaded application runs on an application process which
is monitored by IDRA, and the debugger process hosts the
front-end of the IDRA debugger.

IDRA
Manager

Changes
Handler

Debugger Process

Changes
Handler

IDRA
Monitor

Debugger-UI

Application Process

Application
1

24

5

6 8

9

3

7

Figure 2. Representation of IDRA instances, manager and
monitor and changes handler, in a distributed system of two
machines.

When the application monitored by an IDRA Monitor
throws an exception or stops in a breakpoint (step 1), the
IDRA monitor serializes the program execution state (step
2) and transfers it to the developer’s machine (step 3), where
the IDRA manager reconstructs the debugging session (step
4). The developer can then proceed to debug locally an exact
copy of the original program at the moment of the exception
(step 5). If the developer discovers the cause of the bug, he
can modify the application code locally to create a bugfix
(step 6). At any time, the developer can decide to send all the
changes of a bugfix in a single commit step to the debugged
application (step 7). These changes are applied in the remote
application (step 8) and it is finally possible to resume the
execution of the suspended point of the application (step 9).

IDRA leverages on Fuel [7] for the serialization of the de-
bugging session and on Epicea [8] for the detection of code
changes. All the communication can happen (depending on
the configuration) both via direct TCP connections or us-

ing an HTTP Server and asynchronous HTTP post with Zinc
[24].

Distributed capabilities of IDRA. The architecture of
IDRA is naturally distributed. It is designed in such a way
that more than one IDRA Monitor can be connected to a
Manager. As a result it is possible to debug different con-
nected applications from an unique point. This is achieved
using different queueing systems to handle asynchronously
more than one exception. IDRA offers the possibility to se-
lectively choose which debugging session to open, and pro-
vides some primitives to, for example, restart all the similar
exceptions that it captured. This allows developers to im-
mediately test a new code solution in the local machine on
different remote exceptions.

The Changes Handler is also designed to be connected
to multiple instances of other Changes Handlers. Changes
produced in the debugger can be propagated to the other
nodes of the distributed system when the developer decides
to do so. Thanks to the code update capabilities of Smalltalk,
the code base of different connected nodes can be updated
without stopping the application. This reduces debugging
and deployment time.

The fact that changes are committed when the developer
decides it also allows him to apply to the system only code
that he is confident about. We will later describe how, com-
bining IDRA with the Port programming model, we can
schedule such updates in the nodes in a safe way.

5.3 IDRA on Port
As we explained in Section 3 the architecture of Port allows
developers to deploy a Map/Reduce application, such as the
election pool analyzing application, on top of Yarn. In order
to debug such application, we deploy IDRA on the same
infrastructure.

Distributed System

Developer’s Machine

PHOY

Yarn

Container

Yarn

MapReduce Master

IDRA Monitor

Container

Yarn

MapReduce Worker

IDRA MonitorIDRA Manager

Lighthouse

Port
IDRA
Yarn
Application

Container

Yarn

IDRA Monitor

MapReduce Worker

Figure 3. Architecture of Port and IDRA deployed on Yarn

Figure 3 shows the resulting architecture. Components of
the same colour-pattern communicate with each other. The
developer’s machine runs an instance of Lighthouse to con-
trol the remote PHOY, and the IDRA Manager, that will al-
low to debug the remote application if a bug appears or a
breakpoint is inserted. The distributed system includes dif-
ferent processes, all running on top of Yarn. One process

contains PHOY, correspondent to an Yarn application mas-
ter. The other processes contain an instance of either the
Map/Reduce Master or one of the Worker and, in any case,
an IDRA Monitor. Such instances could be deployed on one
or different nodes of the distributed system. Port abstracts
this leveraging on Yarn. Together with the IDRA Manager
and Monitor instances, there is always an associated IDRA
Changes Handler (not shown in this figure for simplicity).

This architecture is scalable since all the processes are
executed in independent Yarn containers. This means that
the scalability of Port is linked to the one of Yarn, known
to support thousands of connected nodes. The API of Yarn
can be queried to report the status of the different containers,
and the instance of Lighthouse can retrieve this information
from the remote PHOY instance. In this way Lighthouse
allows developers to have a complete view of the state of the
system, with its different containers, master and workers.

With the current implementation, PHOY needs to be sub-
mitted to Yarn. After PHOY is running, Lighthouse can
reach it at a predefined URL. Lighthouse can then be used
to deploy different containers with a master or a worker. We
assume that (1) Pharo is installed at a known path in all the
nodes of the distributed system, and that (2) a Pharo image
is present at a known path of the distributed system. The de-
veloper can deploy containers by specifying the path to the
Pharo image they need to run.

5.4 Debugging scenario in IDRA
Thanks to Lighthouse, Pharo developers can just run their
Big Data applications on Yarn with a statement such as:

Lighthouse run : PollsAnalyzer on : ’ / d a t a / p o l l s ’

where ‘/data/polls’ is the path to the data that has to be
analyzed1. The application will then be automatically run on
the system. If it correctly terminates, the Map/Reduce master
executes the method #handleResult: of the application
with the result of applying #reduce:.

If some of the computation fails, a debugging session
opens at the developer’s machine (running the IDRA Man-
ager instance as shown in Figure 3). The workers will con-
tinue executing, analyzing all the records even if some of
them cause a failure. This feature is extremely useful, espe-
cially if the application fails only for some specific records
(e.g. our faulty record with a non-UNIX timestamp). But,
for the cases this behaviour is not desired, this feature can be
turned off, and the application will stop executing at the first
failure.

Applying code changes. During debugging the developer
will change code to solve the problem. In our debugging sce-
nario that means handling also string-based timestamps. The
developer can the restart that particular execution locally,

1 Our framework supports the Hadoop Distributed File System (HDFS)
through our Pharo-HDFS library (https://gitlab.soft.vub.ac.be/
Marra/pharo-hdfs)

https://gitlab.soft.vub.ac.be/Marra/pharo-hdfs

checking that it correctly terminates. Afterwards, he can de-
cide to commit his bugfix to the running application. This
bugfix will be applied in all the nodes containing an IDRA
Monitor. After applying the changes, the different workers
that presented a failure can restart the failed computations
with the updated code. In this way the records that caused a
failure will be, as well, included in the final result.

In order to avoid applying changes while a worker is
executing the code of the application, our Changes Handler
can instruct it to apply the changes only between executing
different tasks. For instance, if the worker is scheduled to
execute two different map tasks, he will schedule a special
updating task between the two (or when both are finished,
depending on the configuration).

Comparison with BigDebug. In contrast with BigDebug,
IDRA captures immediately the bug context, without any
replay step. Furthermore, it does not limit the code that
the developer is allowed to change, enabling more complete
updates of the code.

6. Conclusion
In this paper we presented an online debugging approach for
distributed applications in Pharo. We first described Port, a
distributed framework for Pharo running on top of Hadoop
Yarn, a mainstream resource manager used by Big Data
frameworks. Port models the execution with an extensible
master/worker model, that we extended with a Map/Reduce
model in this work. We show how to implement Big Data
applications in Port by means of the election pool analyzing
application, originally described in the work of Gulzar et al.
[12], and we show how we can debug it using IDRA, our
out-of-place debugger for Pharo. The main characteristics of
IDRA are:

1. It completely moves the debugging session from the ap-
plication process to an external process, allowing to de-
bug it in an isolated environment while the application
still runs.

2. It is deployable on a realistic distributed environment and
allows to debug different nodes in a centralized way.

3. It provides dynamic code updates facilities to propagate
code changes in the distributed system.

Overall, IDRA enables centralized online debugging of
(distributed) Pharo Map/Reduce applications. Furthermore,
Port is deployable on state-of-the-art clusters thanks to the
use of Hadoop Yarn. We believe that IDRA is a good starting
point to develop new debugging techniques for such com-
plex Big Data systems.

As future work, we would like to improve the debug-
ging model to have more knowledge of the application that
it is debugging. In fact, in the current implementation, IDRA
treats the different processes of the application (e.g. differ-
ent Map/Reduce Worker) as single applications. It can de-

bug (and update) all of them in a centralized way, but it does
not have the necessary knowledge to treat them as an unique
running application. We are also interested to track eventual
dependencies, both of data and computation, between the
different processes and tasks of the distributed application.
Furthermore, we want to improve the code updating capa-
bilities of our system, to handle, for instance, a partially up-
dated distributed system. In general, the system should avoid
executing a certain application flow with different version of
the code. At the framework side (Port), further work is need
to optimize the data transfers over the network.

Acknowledgments
Matteo Marra is a PhD-SB fellow at the Fonds Wetenschap-
pelijk Onderzoek - Vlaanderen - Project number: 1S63418N.
We would like to thank the anonymous reviewers for their
helpful comments.

References
[1] Apache. Apache giraph. http://giraph.apache.org/, . Accessed:

2017-05-10.

[2] Apache. Apache spark. http://spark.apache.org/, .
Accessed: 2017-05-12.

[3] Apache. Apache hadoop yarn.
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/YARN.html, . Accessed: 2017-08-24.

[4] A. Black, O. Nierstrasz, S. Ducasse, and D. Pollet. Pharo
by Example. Open Textbook Library. Square Bracket Asso-
ciates, 2010. ISBN 9783952334140. URL https://books.

google.be/books?id=5ok3AgAAQBAJ.

[5] A. Dave, M. Zaharia, S. Shenker, and I. Stoica. Arthur: Rich
post-facto debugging for production analytics applications.
Technical report, University of California, 2013.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113, Jan.
2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492.

[7] M. Dias, M. M. Peck, S. Ducasse, and G. Arévalo. Clustered
serialization with fuel. In Proceedings of the International
Workshop on Smalltalk Technologies, IWST ’11, pages 1:1–
1:13, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
1050-5. doi: 10.1145/2166929.2166930.

[8] M. Dias, D. Cassou, and S. Ducasse. Representing code
history with development environment events. CoRR,
abs/1309.4334, 2013. URL http://arxiv.org/abs/

1309.4334.

[9] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker. Inter-
actions with Big Data Analytics. ACM, 1072(5220):50–59,
2012.

[10] T. P. S. Foundation. The python debugger. https://docs.

python.org/2/library/pdb.html. Accessed: 2017-11-
30.

[11] GNU. The gnu project debugger. https://www.gnu.org/

software/gdb/. Accessed: 2017-04-14.

https://books.google.be/books?id=5ok3AgAAQBAJ
http://arxiv.org/abs/1309.4334
https://docs.python.org/2/library/pdb.html
https://www.gnu.org/software/gdb/

[12] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie,
T. Millstein, and M. Kim. Bigdebug: Debugging primitives
for interactive big data processing in spark. In Proceedings of
the 38th International Conference on Software Engineering,
ICSE ’16, pages 784–795, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-3900-1. doi: 10.1145/2884781.2884813.

[13] V. Jagannath, Z. Yin, and M. Budiu. Monitoring and debug-
ging dryadlinq applications with daphne. In 2011 IEEE In-
ternational Symposium on Parallel and Distributed Process-
ing Workshops and Phd Forum, pages 1266–1273, Anchorage,
AK, USA, May 2011. doi: 10.1109/IPDPS.2011.268.

[14] D. Kudriashov. Telepharo. https://github.com/

dionisiydk/TelePharo. Accessed: 2017-11-30.

[15] M. Marra. Idra: an out-of-place debugger for non-
stoppable applications, 2017. Vrije Universiteit Brussel. Brus-
sels, Belgium. http://soft.vub.ac.be/Publications/
2017/vub-soft-ms-17-01.pdf.

[16] M. Marra, E. G. Boix, S. Costiou, M. Kerboeuf, A. Plantec,
G. Polito, and S. Ducasse. Debugging cyber-physical systems
with pharo: An experience report. In Proceedings of the 12th
Edition of the International Workshop on Smalltalk Technolo-
gies, IWST ’17, pages 8:1–8:10, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-5554-4. doi: 10.1145/3139903.
3139913.

[17] M. Marra, G. Polito, and E. G. Boix. Out-of-place debugging:
a debugging architecture to reduce debugging interference. To
appear in The Art, Science and Engineering of Programming,
3(2), October 2018.

[18] C. K. Mayer-Schönberger, V. Big Data: A Revolution That
Will Transform How We Live, Work, and Think. London: John
Murray., 2013.

[19] Microsoft. Dryadlinq. https://www.microsoft.com/en-
us/research/project/dryadlinq/. Accessed: 2017-05-10.

[20] M. Mohandas and P. M. Dhanya. An approach for log analysis
based failure monitoring in hadoop cluster. In 2013 Interna-
tional Conference on Green Computing, Communication and
Conservation of Energy (ICGCE), pages 861–867, Dec 2013.
doi: 10.1109/ICGCE.2013.6823555.

[21] D. Pacheco. Postmortem Debugging in Dynamic Environ-
ments. Commun. ACM, 54(12):44–51, 2011. ISSN 0001-
0782. doi: 10.1145/2043174.2043189.

[22] S. Salihoglu, J. Shin, V. Khanna, B. Q. Truong, and J. Widom.
Graft: A debugging tool for apache giraph. In Proceed-
ings of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, pages 1403–1408,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2758-
9. doi: 10.1145/2723372.2735353. URL http://doi.acm.

org/10.1145/2723372.2735353.

[23] Syncsort. Syncsorts third annual hadoop survey un-
covers big iron to big data trends to watch in 2017.
http://www.syncsort.com/en/About/News-Center/Press-
Release/Syncsort-Hadoop-Survey-for-2017. Accessed:
2017-08-22.

[24] Zinc. Zinc. http://zn.stfx.eu/zn/index.html. Ac-
cessed: 2017-05-26.

https://github.com/dionisiydk/TelePharo
http://soft.vub.ac.be/Publications/2017/vub-soft-ms-17-01.pdf
http://doi.acm.org/10.1145/2723372.2735353
http://zn.stfx.eu/zn/index.html

